[quant] Add ConvTranspose reference module (#73031)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73031

Add ConvTranspose reference module

Test Plan:
python3 test/test_quantization.py TestQuantizeEagerOps.test_conv_transpose_2d

Imported from OSS

Reviewed By: jerryzh168

Differential Revision: D34313425

fbshipit-source-id: 3eeec1b24a51c7951c4d4b0c7dca43a012468b85
(cherry picked from commit 0ee7c1cc39)
This commit is contained in:
Terry Chen 2022-02-17 22:24:57 -08:00 committed by PyTorch MergeBot
parent 51b04f27c7
commit 710f12f58e
4 changed files with 307 additions and 4 deletions

View File

@ -3,6 +3,7 @@
import torch
import torch.nn as nn
import torch.nn.quantized as nnq
import torch.nn.quantized._reference as nnqr
from torch.nn.utils.rnn import PackedSequence
from torch.ao.quantization import (
quantize,
@ -74,6 +75,130 @@ import unittest
import numpy as np
class TestQuantizeEagerOps(QuantizationTestCase):
def _test_reference_module_impl(self,
float_module_class,
quantized_module_class,
extra_module_kwargs,
input_size):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = float_module_class(**extra_module_kwargs)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.dequant(x)
return x
class RefM(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = float_module_class(**extra_module_kwargs)
self.quant1 = QuantStub()
self.dequant1 = DeQuantStub()
self.quant2 = QuantStub()
self.dequant2 = DeQuantStub()
def forward(self, x):
x = self.quant1(x)
x = self.dequant1(x)
x = self.conv(x)
x = self.quant2(x)
x = self.dequant2(x)
return x
qengine = 'fbgemm'
with override_quantized_engine(qengine):
data = torch.randn(*input_size, dtype=torch.float)
original_m = M()
original_ref_m = RefM()
original_ref_m.conv.weight = torch.nn.Parameter(original_m.conv.weight.detach())
original_ref_m.conv.bias = torch.nn.Parameter(original_m.conv.bias.detach())
original_m.qconfig = torch.quantization.default_qconfig
m = prepare(original_m)
# calibration
m(data)
m = convert(m)
# check if the module is properly quantized
self.assertEqual(type(m.quant), nnq.Quantize)
self.assertEqual(type(m.conv), quantized_module_class)
self.assertEqual(type(m.dequant), nnq.DeQuantize)
res = m(data)
# quantize the reference model
original_ref_m.eval()
original_ref_m.qconfig = torch.quantization.default_qconfig
ref_m = prepare(original_ref_m)
ref_m(data)
reference_module_mapping = {
QuantStub: nnq.Quantize,
DeQuantStub: nnq.DeQuantize,
nn.Conv1d: nnqr.Conv1d,
nn.Conv2d: nnqr.Conv2d,
nn.Conv3d: nnqr.Conv3d,
nn.ConvTranspose1d: nnqr.ConvTranspose1d,
nn.ConvTranspose2d: nnqr.ConvTranspose2d,
nn.ConvTranspose3d: nnqr.ConvTranspose3d,
}
ref_m = convert(ref_m, mapping=reference_module_mapping)
ref_res = ref_m(data)
self.assertEqual(res, ref_res)
def test_conv_1d(self):
self._test_reference_module_impl(
nn.Conv1d,
nnq.Conv1d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 1)
)
def test_conv_2d(self):
self._test_reference_module_impl(
nn.Conv2d,
nnq.Conv2d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 10, 10)
)
def test_conv_3d(self):
self._test_reference_module_impl(
nn.Conv3d,
nnq.Conv3d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 10, 10, 10)
)
def test_conv_transpose_1d(self):
self._test_reference_module_impl(
nn.ConvTranspose1d,
nnq.ConvTranspose1d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 1)
)
def test_conv_transpose_2d(self):
self._test_reference_module_impl(
nn.ConvTranspose2d,
nnq.ConvTranspose2d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 10, 10)
)
def test_conv_transpose_3d(self):
self._test_reference_module_impl(
nn.ConvTranspose3d,
nnq.ConvTranspose3d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 10, 10, 10)
)
def _test_activation_op_impl(
self, float_module_class, quantized_module_class, extra_module_kwargs):
""" Implementation for testing common activation ops like leaky relu

View File

@ -16,7 +16,7 @@ from torch.ao.quantization.quantization_mappings import (
_has_special_act_post_process,
_get_special_act_post_process,
)
from .utils import get_qparam_dict
from torch.ao.quantization.stubs import DeQuantStub, QuantWrapper
from torch.ao.quantization.qconfig import (
add_module_to_qconfig_obs_ctr,
@ -565,7 +565,15 @@ def swap_module(mod, mapping, custom_module_class_mapping):
new_mod = custom_module_class_mapping[type(mod)].from_observed(mod)
swapped = True
elif type(mod) in mapping:
new_mod = mapping[type(mod)].from_float(mod)
qmod = mapping[type(mod)]
if hasattr(qmod, '_IS_REFERENCE') and qmod._IS_REFERENCE:
assert mod.qconfig is not None
weight_post_process = mod.qconfig.weight()
weight_post_process(mod.weight)
weight_qparams = get_qparam_dict(weight_post_process)
new_mod = qmod.from_float(mod, weight_qparams)
else:
new_mod = qmod.from_float(mod)
swapped = True
if swapped:

View File

@ -1,9 +1,12 @@
from .linear import Linear
from .conv import Conv1d, Conv2d, Conv3d
from .conv import Conv1d, Conv2d, Conv3d, ConvTranspose1d, ConvTranspose2d, ConvTranspose3d
__all__ = [
'Linear',
'Conv1d',
'Conv2d',
'Conv3d',
'ConvTranspose1d',
'ConvTranspose2d',
'ConvTranspose3d',
]

View File

@ -1,7 +1,7 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Dict, Any
from typing import Optional, Dict, Any, List
from torch.nn.common_types import _size_1_t
from .utils import _quantize_weight, _quantize_and_dequantize_weight
from .utils import _save_weight_qparams
@ -14,6 +14,7 @@ class _ConvNd(torch.nn.modules.conv._ConvNd):
this is useful when user want to use this module in other backends like Glow.
"""
__annotations__ = {"bias": Optional[torch.Tensor]}
_IS_REFERENCE = True
def _save_to_state_dict(self, destination, prefix, keep_vars):
super()._save_to_state_dict(destination, prefix, keep_vars)
@ -217,3 +218,169 @@ class Conv3d(_ConvNd, nn.Conv3d):
@classmethod
def from_float(cls, float_conv, weight_qparams):
return _ConvNd.from_float(cls, float_conv, weight_qparams)
class _ConvTransposeNd(_ConvNd, torch.nn.modules.conv._ConvTransposeNd):
""" A reference version of nn.quantized.ConvTranspose2d
we will not pack the parameters in this module, since weight packing is an
optimization for quantized backends supported in PyTorch (fbgemm/qnnpack),
this is useful when user want to use this module in other backends like Glow.
"""
@staticmethod
def from_float(cls, float_conv, weight_qparams):
qref_conv = cls(
float_conv.in_channels,
float_conv.out_channels,
float_conv.kernel_size, # type: ignore[arg-type]
float_conv.stride, # type: ignore[arg-type]
float_conv.padding, # type: ignore[arg-type]
float_conv.output_padding, # type: ignore[arg-type]
float_conv.groups,
float_conv.bias is not None, # type: ignore[arg-type]
float_conv.dilation, # type: ignore[arg-type]
float_conv.padding_mode,
device=float_conv.weight.device,
dtype=float_conv.weight.dtype,
weight_qparams=weight_qparams)
qref_conv.weight = torch.nn.Parameter(float_conv.weight.detach())
if float_conv.bias is not None:
qref_conv.bias = torch.nn.Parameter(float_conv.bias.detach())
return qref_conv
class ConvTranspose1d(_ConvTransposeNd, nn.ConvTranspose1d):
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: _size_1_t,
stride: _size_1_t = 1,
padding: _size_1_t = 0,
output_padding: _size_1_t = 0,
groups: int = 1,
bias: bool = True,
dilation: _size_1_t = 1,
padding_mode: str = "zeros",
device=None,
dtype=None,
weight_qparams: Optional[Dict[str, Any]] = None):
nn.ConvTranspose1d.__init__(
self, in_channels, out_channels, kernel_size, stride, padding, output_padding,
groups, bias, dilation, padding_mode, device, dtype)
self._init_weight_qparams(weight_qparams, device)
def forward(self, x: torch.Tensor, output_size: Optional[List[int]] = None) -> torch.Tensor:
"""
we have:
w(float) -- quant - dequant \
x(float) ------------- F.convTranspose1d ---
In the full model, we will see
w(float) -- quant - *dequant \
x -- quant --- *dequant -- *F.convTranspose1d --- *quant - dequant
and the backend should be able to fuse the ops with `*` into a quantized conv1d
"""
assert isinstance(self.padding, tuple)
# One cannot replace List by Tuple or Sequence in "_output_padding" because
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
output_padding = self._output_padding(
input, output_size, self.stride, self.padding, self.kernel_size, self.dilation) # type: ignore[arg-type]
weight_dequant = self.get_weight()
result = F.conv_transpose1d(
x, weight_dequant, self.bias, self.stride,
self.padding, output_padding, self.groups, self.dilation)
return result
def _get_name(self):
return "QuantizedConvTranspose1d(Reference)"
@classmethod
def from_float(cls, float_conv, weight_qparams):
return _ConvTransposeNd.from_float(cls, float_conv, weight_qparams)
class ConvTranspose2d(_ConvTransposeNd, nn.ConvTranspose2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, output_padding=0,
groups=1, bias=True, dilation=1,
padding_mode='zeros',
device=None,
dtype=None,
weight_qparams: Optional[Dict[str, Any]] = None):
nn.ConvTranspose2d.__init__(
self, in_channels, out_channels, kernel_size, stride, padding, output_padding,
groups, bias, dilation, padding_mode, device, dtype)
self._init_weight_qparams(weight_qparams, device)
def forward(self, x: torch.Tensor, output_size: Optional[List[int]] = None) -> torch.Tensor:
"""
we have:
w(float) -- quant - dequant \
x(float) ------------- F.convTranspose2d ---
In the full model, we will see
w(float) -- quant - *dequant \
x -- quant --- *dequant -- *F.convTranspose2d --- *quant - dequant
and the backend should be able to fuse the ops with `*` into a quantized conv2d
"""
assert isinstance(self.padding, tuple)
# One cannot replace List by Tuple or Sequence in "_output_padding" because
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
output_padding = self._output_padding(
input, output_size, self.stride, self.padding, self.kernel_size, self.dilation) # type: ignore[arg-type]
weight_dequant = self.get_weight()
result = F.conv_transpose2d(
x, weight_dequant, self.bias, self.stride,
self.padding, output_padding, self.groups, self.dilation)
return result
def _get_name(self):
return "QuantizedConvTranspose2d(Reference)"
@classmethod
def from_float(cls, float_conv, weight_qparams):
return _ConvTransposeNd.from_float(cls, float_conv, weight_qparams)
class ConvTranspose3d(_ConvTransposeNd, nn.ConvTranspose3d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, output_padding=0,
groups=1, bias=True, dilation=1,
padding_mode="zeros",
device=None,
dtype=None,
weight_qparams: Optional[Dict[str, Any]] = None):
nn.ConvTranspose3d.__init__(
self, in_channels, out_channels, kernel_size, stride, padding, output_padding,
groups, bias, dilation, padding_mode, device, dtype)
self._init_weight_qparams(weight_qparams, device)
def forward(self, x: torch.Tensor, output_size: Optional[List[int]] = None) -> torch.Tensor:
"""
we have:
w(float) -- quant - dequant \
x(float) ------------- F.convTranspose3d ---
In the full model, we will see
w(float) -- quant - *dequant \
x -- quant --- *dequant -- *F.convTranspose3d --- *quant - dequant
and the backend should be able to fuse the ops with `*` into a quantized conv3d
"""
assert isinstance(self.padding, tuple)
# One cannot replace List by Tuple or Sequence in "_output_padding" because
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
output_padding = self._output_padding(
input, output_size, self.stride, self.padding, self.kernel_size, self.dilation) # type: ignore[arg-type]
weight_dequant = self.get_weight()
result = F.conv_transpose3d(
x, weight_dequant, self.bias, self.stride,
self.padding, output_padding, self.groups, self.dilation)
return result
def _get_name(self):
return "QuantizedConvTranspose3d(Reference)"
@classmethod
def from_float(cls, float_conv, weight_qparams):
return _ConvTransposeNd.from_float(cls, float_conv, weight_qparams)