mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[BE]: ruff - enable PIE804 (#113951)
Enables ruff PIE804 which kills some more unnecessary temporary dicts. Pull Request resolved: https://github.com/pytorch/pytorch/pull/113951 Approved by: https://github.com/ezyang, https://github.com/malfet
This commit is contained in:
parent
4b1583fe57
commit
69d9267c4f
|
|
@ -79,6 +79,7 @@ select = [
|
|||
"PGH004",
|
||||
"PIE794",
|
||||
"PIE800",
|
||||
"PIE804",
|
||||
"PIE807",
|
||||
"PIE810",
|
||||
"PLE",
|
||||
|
|
|
|||
|
|
@ -1308,12 +1308,10 @@ class TestQuantizeEagerONNXExport(common_utils.TestCase):
|
|||
|
||||
with torch.no_grad():
|
||||
_ = model(
|
||||
**{
|
||||
"input_ids": ids["input_ids"],
|
||||
"attention_mask": ids["attention_mask"],
|
||||
"decoder_input_ids": ids["input_ids"],
|
||||
"decoder_attention_mask": ids["attention_mask"],
|
||||
}
|
||||
input_ids=ids["input_ids"],
|
||||
attention_mask=ids["attention_mask"],
|
||||
decoder_input_ids=ids["input_ids"],
|
||||
decoder_attention_mask=ids["attention_mask"],
|
||||
)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -3062,9 +3062,9 @@ class TestFrontend(JitTestCase):
|
|||
res_func = traced_func(**example_input_dict_func)
|
||||
self.assertEqual(res_func, 2 * torch.ones(1))
|
||||
with self.assertRaisesRegex(RuntimeError, r"forward\(\) is missing value for argument 'x'."):
|
||||
res_2 = traced_model_2(**{'z': torch.rand([2]), 'y': torch.rand([2])})
|
||||
res_2 = traced_model_2(**{'z': torch.rand([2]), 'y': torch.rand([2])}) # noqa: PIE804
|
||||
with self.assertRaisesRegex(RuntimeError, r"forward\(\) is missing value for argument 'y'."):
|
||||
res_2 = traced_model_2(**{'x': torch.rand([2]), 'z': torch.rand([2])})
|
||||
res_2 = traced_model_2(**{'x': torch.rand([2]), 'z': torch.rand([2])}) # noqa: PIE804
|
||||
|
||||
|
||||
@skipIfTorchDynamo()
|
||||
|
|
|
|||
|
|
@ -2991,14 +2991,14 @@ class TestBroadcast(TestCase):
|
|||
# gh-13455
|
||||
arrs = [np.empty((5, 6, 7))]
|
||||
mit = np.broadcast(*arrs)
|
||||
mit2 = np.broadcast(*arrs, **{})
|
||||
mit2 = np.broadcast(*arrs, **{}) # noqa: PIE804
|
||||
assert_equal(mit.shape, mit2.shape)
|
||||
assert_equal(mit.ndim, mit2.ndim)
|
||||
assert_equal(mit.nd, mit2.nd)
|
||||
assert_equal(mit.numiter, mit2.numiter)
|
||||
assert_(mit.iters[0].base is mit2.iters[0].base)
|
||||
|
||||
assert_raises(ValueError, np.broadcast, 1, **{"x": 1})
|
||||
assert_raises(ValueError, np.broadcast, 1, **{"x": 1}) # noqa: PIE804
|
||||
|
||||
@skip(reason="error messages do not match.")
|
||||
def test_shape_mismatch_error_message(self):
|
||||
|
|
|
|||
|
|
@ -9,7 +9,7 @@ from torch._export.db.case import export_case, ExportArgs, SupportLevel
|
|||
(torch.randn(4), torch.randn(4)),
|
||||
*[torch.randn(4), torch.randn(4)],
|
||||
mykw0=torch.randn(4),
|
||||
**{"input0": torch.randn(4), "input1": torch.randn(4)}
|
||||
input0=torch.randn(4), input1=torch.randn(4)
|
||||
),
|
||||
tags={"python.data-structure"},
|
||||
support_level=SupportLevel.SUPPORTED,
|
||||
|
|
|
|||
|
|
@ -298,7 +298,7 @@ def tuned_fused_int_mm_mul(mat1, mat2, mat3, out_dtype, *, layout=None):
|
|||
choices,
|
||||
input_nodes=(mat1, mat2, mat3),
|
||||
layout=layout,
|
||||
**dict(mm_options(config, k, layout), **{"ACC_TYPE": "tl.int32"}),
|
||||
**dict(mm_options(config, k, layout), ACC_TYPE="tl.int32"),
|
||||
suffix_args=1,
|
||||
epilogue_fn=V.ops.mul,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -8878,7 +8878,7 @@ class foreach_norm_sample_func(foreach_inputs_sample_func):
|
|||
disable_fastpath = True
|
||||
if ord in (1, 2) and dtype in floating_types_and(torch.half, torch.bfloat16):
|
||||
disable_fastpath = False
|
||||
yield ForeachSampleInput(input, **{"ord": ord, "disable_fastpath": disable_fastpath})
|
||||
yield ForeachSampleInput(input, ord=ord, disable_fastpath=disable_fastpath)
|
||||
|
||||
def __call__(self, opinfo, device, dtype, requires_grad, **kwargs):
|
||||
num_input_tensors = kwargs.pop("num_input_tensors", foreach_num_tensors)
|
||||
|
|
@ -8891,7 +8891,7 @@ class foreach_norm_sample_func(foreach_inputs_sample_func):
|
|||
disable_fastpath = True
|
||||
if ord in (1, 2) and dtype in floating_types_and(torch.half, torch.bfloat16):
|
||||
disable_fastpath = False
|
||||
yield ForeachSampleInput(input, **{"ord": ord, "disable_fastpath": disable_fastpath})
|
||||
yield ForeachSampleInput(input, ord=ord, disable_fastpath=disable_fastpath)
|
||||
|
||||
|
||||
class foreach_lerp_sample_func(foreach_inputs_sample_func):
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user