mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
update torch.eig() doc (#10315)
Summary: This fixes #9383 Update torch.eig() doc, the complex part is written based on https://scc.ustc.edu.cn/zlsc/sugon/intel/mkl/mkl_manual/GUID-16EB5901-5644-4DA6-A332-A052309010C4.htm Pull Request resolved: https://github.com/pytorch/pytorch/pull/10315 Reviewed By: yf225 Differential Revision: D9200723 Pulled By: ailzhang fbshipit-source-id: d2e186fd24defbc4fdea6c2cf3dc4f7e05e1d170
This commit is contained in:
parent
0d03219a42
commit
69760e2840
|
|
@ -1277,7 +1277,8 @@ eig(a, eigenvectors=False, out=None) -> (Tensor, Tensor)
|
|||
Computes the eigenvalues and eigenvectors of a real square matrix.
|
||||
|
||||
Args:
|
||||
a (Tensor): the square matrix for which the eigenvalues and eigenvectors will be computed
|
||||
a (Tensor): the square matrix of shape :math:`(n \times n)` for which the eigenvalues and eigenvectors
|
||||
will be computed
|
||||
eigenvectors (bool): ``True`` to compute both eigenvalues and eigenvectors;
|
||||
otherwise, only eigenvalues will be computed
|
||||
out (tuple, optional): the output tensors
|
||||
|
|
@ -1285,8 +1286,17 @@ Args:
|
|||
Returns:
|
||||
(Tensor, Tensor): A tuple containing
|
||||
|
||||
- **e** (*Tensor*): the right eigenvalues of ``a``
|
||||
- **v** (*Tensor*): the eigenvectors of ``a`` if ``eigenvectors`` is ``True``; otherwise an empty tensor
|
||||
- **e** (*Tensor*): Shape :math:`(n \times 2)`. Each row is an eigenvalue of ``a``,
|
||||
where the first element is the real part and the second element is the imaginary part.
|
||||
The eigenvalues are not necessarily ordered.
|
||||
- **v** (*Tensor*): If ``eigenvectors=False``, it's an empty tensor.
|
||||
Otherwise, this tensor of shape :math:`(n \times n)` can be used to compute normalized (unit length)
|
||||
eigenvectors of corresponding eigenvalues ``e`` as follows.
|
||||
If the corresponding e[j] is a real number, column v[:, j] is the eigenvector corresponding to
|
||||
eigenvalue e[j].
|
||||
If the corresponding e[j] and e[j + 1] eigenvalues form a complex conjugate pair, then the true eigenvectors
|
||||
can be computed as
|
||||
:math:`eigenvector[j] = v[:, j] + i * v[:, j + 1], eigenvector[j + 1] = v[:, j] - i * v[:, j + 1]`.
|
||||
""")
|
||||
|
||||
add_docstr(torch.einsum,
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user