mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[CUDA][cuBLAS][cuBLASLt] avoid polluting prefer cuBLAS/Lt setting across tests (#153655)
Some tests may not set the preferred backend, which leads to unexpected behavior when multiple tests are run vs. standalone Tests that should exercise both backends should explicitly parametrize this setting Pull Request resolved: https://github.com/pytorch/pytorch/pull/153655 Approved by: https://github.com/ngimel
This commit is contained in:
parent
a7c01d7f13
commit
5163bf0069
|
|
@ -62,6 +62,15 @@ if TEST_CUDA:
|
|||
assert torch.get_default_dtype() is torch.float32
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def blas_library_context(backend):
|
||||
prev_backend = torch.backends.cuda.preferred_blas_library()
|
||||
torch.backends.cuda.preferred_blas_library(backend)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
torch.backends.cuda.preferred_blas_library(prev_backend)
|
||||
|
||||
class TestMatmulCuda(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
|
|
@ -141,7 +150,9 @@ class TestMatmulCuda(TestCase):
|
|||
torch.float32: xtol(atol=1e-1, rtol=1e-1)})
|
||||
@dtypes(torch.float16, torch.bfloat16, torch.float32)
|
||||
@parametrize("size", [100, 1000, 10000])
|
||||
def test_cublas_addmm(self, size: int, dtype: torch.dtype):
|
||||
@parametrize("backend", ["cublas", "cublaslt"])
|
||||
def test_cublas_addmm(self, size: int, dtype: torch.dtype, backend):
|
||||
with blas_library_context(backend):
|
||||
self.cublas_addmm(size, dtype, False)
|
||||
|
||||
@onlyCUDA
|
||||
|
|
@ -151,20 +162,21 @@ class TestMatmulCuda(TestCase):
|
|||
torch.bfloat16: xtol(atol=1e1, rtol=2e-1)})
|
||||
@dtypes(torch.float16, torch.bfloat16)
|
||||
@parametrize("size", [100, 1000, 10000])
|
||||
def test_cublas_addmm_reduced_precision(self, size: int, dtype: torch.dtype):
|
||||
@parametrize("backend", ["cublas", "cublaslt"])
|
||||
def test_cublas_addmm_reduced_precision(self, size: int, dtype: torch.dtype, backend):
|
||||
with blas_library_context(backend):
|
||||
self.cublas_addmm(size, dtype, True)
|
||||
|
||||
@onlyCUDA
|
||||
@skipIfRocmVersionLessThan((5, 2))
|
||||
@dtypes(torch.float16)
|
||||
# m == 4 chooses OUTPUT_TYPE reduction on H200
|
||||
# m == 8 chooses OUTOUT_TYPE reduction on A100
|
||||
# m == 8 chooses OUTPUT_TYPE reduction on A100
|
||||
@parametrize("small_size", [4, 8])
|
||||
@parametrize("size", [32768])
|
||||
@parametrize("backend", ["cublaslt", "cublas"])
|
||||
def test_cublas_addmm_no_reduced_precision(self, small_size: int, size: int, dtype: torch.dtype, backend):
|
||||
# TODO(eqy): replace with contextlib once that is merged
|
||||
orig = torch.backends.cuda.preferred_blas_library()
|
||||
with blas_library_context(backend):
|
||||
torch.backends.cuda.preferred_blas_library(backend)
|
||||
orig_precision = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
|
||||
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
||||
|
|
@ -175,7 +187,6 @@ class TestMatmulCuda(TestCase):
|
|||
out = torch.addmm(b, m1, m2, beta=1.0)
|
||||
self.assertEqual(out.sum().item(), 0.0)
|
||||
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig_precision
|
||||
torch.backends.cuda.preferred_blas_library(orig)
|
||||
|
||||
@onlyCUDA
|
||||
@skipIfRocmVersionLessThan((5, 2))
|
||||
|
|
@ -184,7 +195,9 @@ class TestMatmulCuda(TestCase):
|
|||
torch.bfloat16: xtol(atol=1e1, rtol=2e-1)})
|
||||
@dtypes(torch.float16, torch.bfloat16)
|
||||
@parametrize("size", [100, 1000, 10000])
|
||||
def test_cublas_addmm_reduced_precision_fp16_accumulate(self, size: int, dtype: torch.dtype):
|
||||
@parametrize("backend", ["cublas", "cublaslt"])
|
||||
def test_cublas_addmm_reduced_precision_fp16_accumulate(self, size: int, dtype: torch.dtype, backend):
|
||||
with blas_library_context(backend):
|
||||
self.cublas_addmm(size, dtype, False, True)
|
||||
|
||||
@onlyCUDA
|
||||
|
|
@ -479,8 +492,7 @@ class TestMatmulCuda(TestCase):
|
|||
def test_mm_bmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
|
||||
device = "cuda"
|
||||
dtype = input_dtype
|
||||
torch.backends.cuda.preferred_blas_library(backend)
|
||||
|
||||
with blas_library_context(backend):
|
||||
def create_inputs(B=None):
|
||||
if B is None:
|
||||
a = torch.randn(M, K, device=device, dtype=dtype)
|
||||
|
|
@ -535,8 +547,7 @@ class TestMatmulCuda(TestCase):
|
|||
def test_addmm_baddmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
|
||||
device = "cuda"
|
||||
dtype = input_dtype
|
||||
torch.backends.cuda.preferred_blas_library(backend)
|
||||
|
||||
with blas_library_context(backend):
|
||||
def create_inputs(B=None):
|
||||
if B is None:
|
||||
a = torch.randn(M, K, device=device, dtype=dtype)
|
||||
|
|
@ -573,10 +584,16 @@ class TestMatmulCuda(TestCase):
|
|||
else:
|
||||
if batch_size:
|
||||
out = torch.baddbmm(c, a, b, out_dtype=output_dtype)
|
||||
baseline = torch.baddbmm(c_fp32, a_fp32, b_fp32) if output_dtype == torch.float32 else torch.baddbmm(c, a, b)
|
||||
if output_dtype == torch.float32:
|
||||
baseline = torch.baddbmm(c_fp32, a_fp32, b_fp32)
|
||||
else:
|
||||
baseline = torch.baddbmm(c, a, b)
|
||||
else:
|
||||
out = torch.addmm(c, a, b, out_dtype=output_dtype)
|
||||
baseline = torch.addmm(c_fp32, a_fp32, b_fp32) if output_dtype == torch.float32 else torch.addmm(c, a, b)
|
||||
if output_dtype == torch.float32:
|
||||
baseline = torch.addmm(c_fp32, a_fp32, b_fp32)
|
||||
else:
|
||||
baseline = torch.addmm(c, a, b)
|
||||
|
||||
self.assertEqual(out.dtype, output_dtype)
|
||||
torch.testing.assert_close(out, baseline, atol=1e-3, rtol=1e-3)
|
||||
|
|
@ -590,6 +607,7 @@ class TestMatmulCuda(TestCase):
|
|||
M, N, K = 32, 32, 32
|
||||
device = "cuda"
|
||||
dtype = torch.float16
|
||||
with blas_library_context(backend):
|
||||
torch.backends.cuda.preferred_blas_library(backend)
|
||||
|
||||
orig_fp16_accum = torch.backends.cuda.matmul.allow_fp16_accumulation
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user