mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[CUDA][cuBLAS][cuBLASLt] avoid polluting prefer cuBLAS/Lt setting across tests (#153655)
Some tests may not set the preferred backend, which leads to unexpected behavior when multiple tests are run vs. standalone Tests that should exercise both backends should explicitly parametrize this setting Pull Request resolved: https://github.com/pytorch/pytorch/pull/153655 Approved by: https://github.com/ngimel
This commit is contained in:
parent
084c4aa614
commit
3bde364996
|
|
@ -62,6 +62,15 @@ if TEST_CUDA:
|
|||
assert torch.get_default_dtype() is torch.float32
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def blas_library_context(backend):
|
||||
prev_backend = torch.backends.cuda.preferred_blas_library()
|
||||
torch.backends.cuda.preferred_blas_library(backend)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
torch.backends.cuda.preferred_blas_library(prev_backend)
|
||||
|
||||
class TestMatmulCuda(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
|
|
@ -141,7 +150,9 @@ class TestMatmulCuda(TestCase):
|
|||
torch.float32: xtol(atol=1e-1, rtol=1e-1)})
|
||||
@dtypes(torch.float16, torch.bfloat16, torch.float32)
|
||||
@parametrize("size", [100, 1000, 10000])
|
||||
def test_cublas_addmm(self, size: int, dtype: torch.dtype):
|
||||
@parametrize("backend", ["cublas", "cublaslt"])
|
||||
def test_cublas_addmm(self, size: int, dtype: torch.dtype, backend):
|
||||
with blas_library_context(backend):
|
||||
self.cublas_addmm(size, dtype, False)
|
||||
|
||||
@onlyCUDA
|
||||
|
|
@ -151,7 +162,9 @@ class TestMatmulCuda(TestCase):
|
|||
torch.bfloat16: xtol(atol=1e1, rtol=2e-1)})
|
||||
@dtypes(torch.float16, torch.bfloat16)
|
||||
@parametrize("size", [100, 1000, 10000])
|
||||
def test_cublas_addmm_reduced_precision(self, size: int, dtype: torch.dtype):
|
||||
@parametrize("backend", ["cublas", "cublaslt"])
|
||||
def test_cublas_addmm_reduced_precision(self, size: int, dtype: torch.dtype, backend):
|
||||
with blas_library_context(backend):
|
||||
self.cublas_addmm(size, dtype, True)
|
||||
|
||||
@onlyCUDA
|
||||
|
|
@ -161,7 +174,9 @@ class TestMatmulCuda(TestCase):
|
|||
torch.bfloat16: xtol(atol=1e1, rtol=2e-1)})
|
||||
@dtypes(torch.float16, torch.bfloat16)
|
||||
@parametrize("size", [100, 1000, 10000])
|
||||
def test_cublas_addmm_reduced_precision_fp16_accumulate(self, size: int, dtype: torch.dtype):
|
||||
@parametrize("backend", ["cublas", "cublaslt"])
|
||||
def test_cublas_addmm_reduced_precision_fp16_accumulate(self, size: int, dtype: torch.dtype, backend):
|
||||
with blas_library_context(backend):
|
||||
self.cublas_addmm(size, dtype, False, True)
|
||||
|
||||
@onlyCUDA
|
||||
|
|
@ -456,8 +471,7 @@ class TestMatmulCuda(TestCase):
|
|||
def test_mm_bmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
|
||||
device = "cuda"
|
||||
dtype = input_dtype
|
||||
torch.backends.cuda.preferred_blas_library(backend)
|
||||
|
||||
with blas_library_context(backend):
|
||||
def create_inputs(B=None):
|
||||
if B is None:
|
||||
a = torch.randn(M, K, device=device, dtype=dtype)
|
||||
|
|
@ -512,8 +526,7 @@ class TestMatmulCuda(TestCase):
|
|||
def test_addmm_baddmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
|
||||
device = "cuda"
|
||||
dtype = input_dtype
|
||||
torch.backends.cuda.preferred_blas_library(backend)
|
||||
|
||||
with blas_library_context(backend):
|
||||
def create_inputs(B=None):
|
||||
if B is None:
|
||||
a = torch.randn(M, K, device=device, dtype=dtype)
|
||||
|
|
@ -550,10 +563,16 @@ class TestMatmulCuda(TestCase):
|
|||
else:
|
||||
if batch_size:
|
||||
out = torch.baddbmm(c, a, b, out_dtype=output_dtype)
|
||||
baseline = torch.baddbmm(c_fp32, a_fp32, b_fp32) if output_dtype == torch.float32 else torch.baddbmm(c, a, b)
|
||||
if output_dtype == torch.float32:
|
||||
baseline = torch.baddbmm(c_fp32, a_fp32, b_fp32)
|
||||
else:
|
||||
baseline = torch.baddbmm(c, a, b)
|
||||
else:
|
||||
out = torch.addmm(c, a, b, out_dtype=output_dtype)
|
||||
baseline = torch.addmm(c_fp32, a_fp32, b_fp32) if output_dtype == torch.float32 else torch.addmm(c, a, b)
|
||||
if output_dtype == torch.float32:
|
||||
baseline = torch.addmm(c_fp32, a_fp32, b_fp32)
|
||||
else:
|
||||
baseline = torch.addmm(c, a, b)
|
||||
|
||||
self.assertEqual(out.dtype, output_dtype)
|
||||
torch.testing.assert_close(out, baseline, atol=1e-3, rtol=1e-3)
|
||||
|
|
@ -567,6 +586,7 @@ class TestMatmulCuda(TestCase):
|
|||
M, N, K = 32, 32, 32
|
||||
device = "cuda"
|
||||
dtype = torch.float16
|
||||
with blas_library_context(backend):
|
||||
torch.backends.cuda.preferred_blas_library(backend)
|
||||
|
||||
orig_fp16_accum = torch.backends.cuda.matmul.allow_fp16_accumulation
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user