mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[skip ci] Fix "arugment" typos (#61459)
Summary: Fixes https://github.com/pytorch/pytorch/issues/61455. Pull Request resolved: https://github.com/pytorch/pytorch/pull/61459 Reviewed By: soulitzer Differential Revision: D29636559 Pulled By: samestep fbshipit-source-id: 9ad65265c0491d9e81bb303abe3a07c6843bfa4a
This commit is contained in:
parent
e5fcc903d6
commit
3a0801f960
|
|
@ -7,7 +7,7 @@ void common_device_check_failure(optional<Device>& common_device, const at::Tens
|
|||
TORCH_CHECK(false,
|
||||
"Expected all tensors to be on the same device, but "
|
||||
"found at least two devices, ", common_device.value(), " and ", tensor.device(), "! "
|
||||
"(when checking arugment for argument ", argName, " in method ", methodName, ")");
|
||||
"(when checking argument for argument ", argName, " in method ", methodName, ")");
|
||||
}
|
||||
|
||||
} // namespace impl
|
||||
|
|
|
|||
|
|
@ -50,7 +50,7 @@ C10_DEFINE_string(
|
|||
C10_DEFINE_bool(
|
||||
no_inputs,
|
||||
false,
|
||||
"Whether the model has any input. Will ignore other input arugments if true");
|
||||
"Whether the model has any input. Will ignore other input arguments if true");
|
||||
C10_DEFINE_bool(
|
||||
use_caching_allocator,
|
||||
false,
|
||||
|
|
|
|||
|
|
@ -48,7 +48,7 @@ C10_DEFINE_string(
|
|||
C10_DEFINE_bool(
|
||||
no_inputs,
|
||||
false,
|
||||
"Whether the model has any input. Will ignore other input arugments if true");
|
||||
"Whether the model has any input. Will ignore other input arguments if true");
|
||||
C10_DEFINE_bool(
|
||||
use_caching_allocator,
|
||||
false,
|
||||
|
|
|
|||
|
|
@ -247,7 +247,7 @@ multiplication after the ``F.relu``, and then clean up the original
|
|||
objects to automatically record operations into the :class:`Graph`.
|
||||
|
||||
To use this method, we write the operations that we want inserted as regular
|
||||
PyTorch code and invoke that code with :class:`Proxy` objects as arugments.
|
||||
PyTorch code and invoke that code with :class:`Proxy` objects as arguments.
|
||||
These :class:`Proxy` objects will capture the operations that are performed
|
||||
on them and append them to the :class:`Graph`.
|
||||
|
||||
|
|
|
|||
|
|
@ -407,7 +407,7 @@ class TestTorchFunctionOverride(TestCase):
|
|||
|
||||
def test_precedence_semantics(self):
|
||||
"""Test semantics for __torch_function__ for functions that take
|
||||
multiple arugments
|
||||
multiple arguments
|
||||
|
||||
For functions that take multiple arguments, the appropriate
|
||||
__torch_function__ implementation to call is determined by
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ namespace torch {
|
|||
namespace jit {
|
||||
namespace tensorexpr {
|
||||
// A helper structure to store the arguments to specify dimensions. In the
|
||||
// Compute arugments for dim_args, all of the following is supported. For
|
||||
// Compute arguments for dim_args, all of the following is supported. For
|
||||
// example:
|
||||
// dim_args: {1, 2, 3, 4}
|
||||
// dim_args: {{1, "x"}, {2, "y"}, {3, "z"}}
|
||||
|
|
|
|||
|
|
@ -317,7 +317,7 @@ def _args_kwargs_to_normalized_args_kwargs(sig : inspect.Signature, args : Tuple
|
|||
|
||||
target (inspect.Signature): Signature object for the target
|
||||
args (Tuple): Arguments that appear at the callsite for `target`
|
||||
kwargs (Dict): Keyword arugments that appear at the callsite for `target`
|
||||
kwargs (Dict): Keyword arguments that appear at the callsite for `target`
|
||||
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
||||
|
||||
Returns:
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user