[nativert] Move PrimKernelRegistry to PyTorch core (#156506)

Summary:
Torch Native Runtime RFC: pytorch/rfcs#72
PrimKernelRegistry manages a small subset of kernel registry in NativeRT.
Including ListPack, ListUnpack, Input, Output, VarConcat, VarStack

Test Plan: Internal unittests

Differential Revision: D77034945

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156506
Approved by: https://github.com/zhxchen17
This commit is contained in:
Yiming Zhou 2025-06-24 21:42:38 +00:00 committed by PyTorch MergeBot
parent fa0ea57f5e
commit 310e8361c5
3 changed files with 213 additions and 0 deletions

View File

@ -614,6 +614,7 @@ libtorch_nativert_sources = [
"torch/nativert/executor/memory/GreedyBySize.cpp",
"torch/nativert/executor/memory/Bump.cpp",
"torch/nativert/kernels/CallTorchBindKernel.cpp",
"torch/nativert/kernels/PrimKernelRegistry.cpp",
]
torch_mobile_tracer_sources = [

View File

@ -0,0 +1,172 @@
#include <ATen/record_function.h>
#include <ATen/CPUFunctions.h>
#include <c10/core/ScalarType.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/runtime/static/ops.h>
#include <c10/util/Enumerate.h>
#include <torch/nativert/kernels/PrimKernelRegistry.h>
namespace torch::nativert {
C10_DEFINE_REGISTRY(PrimKernelRegistry, OpKernel, const Node*);
namespace {
class OpKernel_prim_listpack : public OpKernel {
public:
explicit OpKernel_prim_listpack(const Node* node)
: OpKernel(
node,
std::nullopt,
torch::nativert::OpKernelKind::kPrimKernel) {
auto listType = node->outputs()[0]->type();
switch (listType.kind()) {
case Type::Kind::TensorList:
type_ = c10::TensorType::get();
break;
case Type::Kind::SymIntList:
type_ = c10::IntType::get();
break;
case Type::Kind::OptionalTensorList:
type_ = c10::OptionalType::create(c10::TensorType::get());
break;
default:
TORCH_CHECK(false, "Unsupported list type: ", listType);
}
}
void computeInternal(ExecutionFrame& executionFrame) const override final {
RECORD_USER_SCOPE("sigmoid::OpKernel_prim_listpack");
c10::List<c10::IValue> list(type_);
list.reserve(numInputs());
for (size_t i = 0; i < numInputs(); ++i) {
if (KernelInput(i).isNone()) {
list.emplace_back();
} else {
list.push_back(KernelInput(i));
}
}
KernelOutput(0) = std::move(list);
}
private:
c10::TypePtr type_;
};
} // namespace
C10_REGISTER_TYPED_CLASS(
PrimKernelRegistry,
"prim.ListPack",
OpKernel_prim_listpack);
REGISTER_PRIM_KERNEL("prim.ListUnpack", prim_listunpack, {
RECORD_USER_SCOPE("sigmoid::OpKernel_prim_listunpack");
auto inputListRef = KernelInput(0).toListRef();
for (const auto& [i, ivalue] : c10::enumerate(inputListRef)) {
KernelOutput(i) = ivalue;
}
});
// Noop for input and output
REGISTER_PRIM_KERNEL("prim.Input", prim_input, {});
REGISTER_PRIM_KERNEL("prim.Output", prim_output, {});
namespace {
class OpKernel_variadic_concat : public OpKernel {
public:
explicit OpKernel_variadic_concat(const Node* node)
: OpKernel(
node,
std::nullopt,
torch::nativert::OpKernelKind::kPrimKernel) {
dim_ = node_->attributes().size() > 0
? constantToIValue(node_->getAttribute("dim").value).toInt()
: 0;
}
void computeInternal(ExecutionFrame& executionFrame) const override final {
{
const size_t numNodeInps = numInputs();
auto numCatInps = numNodeInps;
auto dim = dim_;
if (KernelInput(numCatInps - 1).isInt()) {
dim = KernelInput(numCatInps - 1).toInt();
numCatInps--;
}
std::vector<at::Tensor> inputs(numCatInps);
for (const auto i : c10::irange(numCatInps)) {
inputs[i] = KernelInput(i).toTensor();
}
if (KernelOutput(0).isNone()) {
KernelOutput(0) = at::cpu::cat(inputs, dim);
return;
}
auto& out_t = KernelOutput(0).toTensor();
fastResizeToZero(out_t);
at::cpu::cat_outf(inputs, dim, out_t);
}
}
private:
int dim_;
};
} // namespace
C10_REGISTER_TYPED_CLASS(
PrimKernelRegistry,
"prim.VarConcat",
OpKernel_variadic_concat);
namespace {
class OpKernel_variadic_stack : public OpKernel {
public:
explicit OpKernel_variadic_stack(const Node* node)
: OpKernel(
node,
std::nullopt,
torch::nativert::OpKernelKind::kPrimKernel) {
dim_ = node_->attributes().size() > 0
? constantToIValue(node_->getAttribute("dim").value).toInt()
: 0;
}
void computeInternal(ExecutionFrame& executionFrame) const override final {
{
const size_t numNodeInps = numInputs();
auto numStackInps = numNodeInps;
auto dim = dim_;
if (KernelInput(numStackInps - 1).isInt()) {
dim = KernelInput(numStackInps - 1).toInt();
numStackInps--;
}
std::vector<at::Tensor> inputs(numStackInps);
for (const auto i : c10::irange(numStackInps)) {
inputs[i] = KernelInput(i).toTensor();
}
auto& out = KernelOutput(0);
if (out.isNone()) {
out = at::native::_stack_cpu(inputs, dim);
return;
}
auto& out_t = out.toTensor();
fastResizeToZero(out_t);
at::native::_stack_out_cpu(inputs, dim, out_t);
}
}
private:
int64_t dim_;
};
} // namespace
C10_REGISTER_TYPED_CLASS(
PrimKernelRegistry,
"prim.VarStack",
OpKernel_variadic_stack);
} // namespace torch::nativert

View File

@ -0,0 +1,40 @@
#pragma once
#include <torch/nativert/executor/OpKernel.h>
#include <torch/nativert/graph/Graph.h>
#include <torch/nativert/kernels/C10Kernel.h>
namespace torch::nativert {
#define KernelInput(id) input(id, executionFrame)
#define KernelOutput(id) output(id, executionFrame)
TORCH_DECLARE_REGISTRY(PrimKernelRegistry, OpKernel, const Node*);
#define REGISTER_PRIM_KERNEL(name, id, ...) \
class OpKernel_##id : public OpKernel { \
public: \
OpKernel_##id(const Node* node) \
: OpKernel( \
node, \
std::nullopt, \
torch::nativert::OpKernelKind::kPrimKernel) {} \
void computeInternal( \
ExecutionFrame& executionFrame) const override final { \
__VA_ARGS__; \
} \
}; \
C10_REGISTER_TYPED_CLASS(PrimKernelRegistry, name, OpKernel_##id);
inline bool checkResizedDataPtr(at::Tensor& t) {
auto const prev_data_ptr = t.data_ptr();
t.resize_({0});
return prev_data_ptr == t.data_ptr();
}
inline void fastResizeToZero(at::Tensor& t) {
t.unsafeGetTensorImpl()->set_sizes_contiguous({0});
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(checkResizedDataPtr(t));
}
} // namespace torch::nativert