[Quant] Add initial Executorch BackendConfig (#85527)

Summary: This commit adds the initial BackendConfig for backends
PyTorch lowers to through the Executorch stack. This initial
version is only intended to cover the following set of ops:

    quantized::linear_dynamic,
    quantized::add,
    quantized::batch_norm2d,
    quantized::conv2d.new,
    quantized::linear,
    quantized::conv2d_relu.new,
    aten::relu_,
    aten::_adaptive_avg_pool2d,
    aten::_reshape_alias_copy,
    aten::squeeze.dim,
    aten::permute

For now, the `BackendPatternConfig` for each of these ops is
the same as the ones for the corresponding ops in the FBGEMM
`BackendConfig`, though this may change in the future.

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85527
Approved by: https://github.com/jerryzh168
This commit is contained in:
andrewor14 2022-09-23 06:54:18 -07:00 committed by PyTorch MergeBot
parent a8074a1a0b
commit 2e81710366

View File

@ -0,0 +1,217 @@
import operator
from typing import List
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.nn.qat as nnqat
import torch.nn.quantized._reference as nnqr
from .backend_config import BackendConfig, BackendPatternConfig, DTypeConfig, ObservationType
from ._common_operator_config_utils import _Conv2dMetadata
from ..fuser_method_mappings import reverse_sequential_wrapper2
__all__ = [
"get_executorch_backend_config",
]
# ===================
# | DTYPE CONFIGS |
# ===================
executorch_weighted_op_int8_dtype_config = DTypeConfig(
input_dtype=torch.quint8,
output_dtype=torch.quint8,
weight_dtype=torch.qint8,
bias_dtype=torch.float,
)
executorch_default_op_quint8_dtype_config = DTypeConfig(
input_dtype=torch.quint8,
output_dtype=torch.quint8,
)
executorch_default_dynamic_int8_dtype_config = DTypeConfig(
input_dtype=torch.quint8,
output_dtype=torch.float,
weight_dtype=torch.qint8,
bias_dtype=torch.float,
is_dynamic=True,
)
executorch_default_dynamic_float16_dtype_config = DTypeConfig(
input_dtype=torch.float16,
output_dtype=torch.float,
weight_dtype=torch.float16,
bias_dtype=torch.float,
is_dynamic=True,
)
# =============================
# | BACKEND PATTERN CONFIGS |
# =============================
def _get_linear_configs() -> List[BackendPatternConfig]:
"""
Return all configs related to linear modules and ops.
"""
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
dtype_configs = [
executorch_weighted_op_int8_dtype_config,
executorch_default_dynamic_int8_dtype_config,
executorch_default_dynamic_float16_dtype_config,
]
linear_configs: List[BackendPatternConfig] = []
# linear module
linear_configs.append(
BackendPatternConfig(torch.nn.Linear)
.set_observation_type(observation_type) # noqa: E131
.set_dtype_configs(dtype_configs)
.set_root_module(torch.nn.Linear)
.set_reference_quantized_module(nnqr.Linear)
.set_qat_module(nnqat.Linear))
# functional linear
linear_configs.append(
BackendPatternConfig(torch.nn.functional.linear)
.set_observation_type(observation_type) # noqa: E131
.set_dtype_configs(dtype_configs)
._set_input_type_to_index({"weight": 1, "bias": 2}))
return linear_configs
def _get_conv_configs() -> List[BackendPatternConfig]:
"""
Return all configs related to conv modules and ops.
"""
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
dtype_configs = [executorch_weighted_op_int8_dtype_config]
conv_configs = []
for convs in [_Conv2dMetadata]:
# conv module
conv_configs.append(
BackendPatternConfig(convs.root)
.set_observation_type(observation_type) # noqa: E131
.set_dtype_configs(dtype_configs)
.set_root_module(convs.root)
.set_reference_quantized_module(convs.reference)
.set_qat_module(convs.qat))
# functional conv
conv_configs.append(
BackendPatternConfig(convs.func)
.set_observation_type(observation_type) # noqa: E131
.set_dtype_configs(dtype_configs)
._set_input_type_to_index({"weight": 1, "bias": 2}))
# conv module + relu module
conv_configs.append(
BackendPatternConfig((torch.nn.ReLU, convs.root))
.set_dtype_configs(dtype_configs) # noqa: E131
.set_fuser_method(reverse_sequential_wrapper2(convs.fused_conv_relu))
.set_fused_module(convs.fused_conv_relu))
# conv module + functional relu
conv_configs.append(
BackendPatternConfig((F.relu, convs.root))
.set_dtype_configs(dtype_configs) # noqa: E131
.set_fuser_method(reverse_sequential_wrapper2(convs.fused_conv_relu))
.set_fused_module(convs.fused_conv_relu))
# fused conv relu module
conv_configs.append(
BackendPatternConfig(convs.fused_conv_relu)
.set_observation_type(observation_type) # noqa: E131
.set_dtype_configs(dtype_configs)
.set_root_module(convs.root)
.set_reference_quantized_module(convs.reference)
.set_qat_module(convs.relu_qat))
# functional conv + relu module
conv_configs.append(
BackendPatternConfig((torch.nn.ReLU, convs.func))
.set_observation_type(observation_type) # noqa: E131
.set_dtype_configs(dtype_configs))
# functional conv + functional relu
conv_configs.append(
BackendPatternConfig((F.relu, convs.func))
.set_observation_type(observation_type) # noqa: E131
.set_dtype_configs(dtype_configs))
return conv_configs
def _get_binary_ops_configs() -> List[BackendPatternConfig]:
"""
Return all configs related to binary ops.
"""
dtype_configs = [executorch_weighted_op_int8_dtype_config]
num_tensor_args_to_observation_type_mapping = {
# TODO: this is not used right now since we have extra check in prepare
# will need to change this to NO_OBSERVER later after we implemented
# Tensor dtype inference properly
0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT,
2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
}
binary_op_configs: List[BackendPatternConfig] = []
for op in [operator.add, torch.add]:
binary_op_configs.append(
BackendPatternConfig(op)
.set_dtype_configs(dtype_configs) # noqa: E131
._set_num_tensor_args_to_observation_type(num_tensor_args_to_observation_type_mapping))
return binary_op_configs
def _get_share_qparams_ops_configs() -> List[BackendPatternConfig]:
"""
Return the operator configs for the operators that works for both float and quantized
input if input is quantized, the output Tensor shares the same quantization parameter
with input.
Example operator: avgpool2d, reshape, transpose, maxpool2d
Example observed operator:
observer_0 - avgpool2d - observer_0 (same observer instance as input)
"""
observation_type = ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT
dtype_configs = [executorch_default_op_quint8_dtype_config]
share_qparams_ops = [
F.adaptive_avg_pool2d,
F.relu,
F.relu6,
torch.nn.AdaptiveAvgPool2d,
torch.squeeze,
"permute",
"reshape",
"relu",
"relu_",
"squeeze",
"squeeze_",
]
share_qparams_op_configs: List[BackendPatternConfig] = []
for op in share_qparams_ops:
share_qparams_ops.append(
BackendPatternConfig(op)
.set_observation_type(observation_type) # noqa: E131
.set_dtype_configs(dtype_configs))
return share_qparams_op_configs
def _get_bn_configs() -> List[BackendPatternConfig]:
"""
Return all configs related to batchnorm.
"""
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
dtype_configs = [executorch_default_op_quint8_dtype_config]
bn_configs = []
bn_configs.append(
BackendPatternConfig(nn.BatchNorm2d)
.set_observation_type(observation_type) # noqa: E131
.set_dtype_configs(dtype_configs))
return bn_configs
# =====================
# | BACKEND CONFIGS |
# =====================
def get_executorch_backend_config() -> BackendConfig:
"""
Return the `BackendConfig` for backends PyTorch lowers to through the Executorch stack.
"""
return BackendConfig("executorch") \
.set_backend_pattern_configs(_get_linear_configs()) \
.set_backend_pattern_configs(_get_conv_configs()) \
.set_backend_pattern_configs(_get_binary_ops_configs()) \
.set_backend_pattern_configs(_get_share_qparams_ops_configs()) \
.set_backend_pattern_configs(_get_bn_configs())