Back out "[pt1][tensor] Change ConvPoolOp<Context>::SetOutputSize to ConvPoolOp<Context>::GetOutputSize" (#16516)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16516

Original commit changeset: 64abce3dbaed

Reviewed By: dzhulgakov

Differential Revision: D13863715

fbshipit-source-id: f1923fdca4a1a82768d9c280a8493ff15a7eb2ba
This commit is contained in:
Jerry Zhang 2019-01-30 12:37:55 -08:00 committed by Facebook Github Bot
parent cdbd388206
commit 2af95d8e3e
29 changed files with 95 additions and 115 deletions

View File

@ -119,6 +119,7 @@ class NNPACKConvOp final : public ConvPoolOpBase<CPUContext> {
auto& X = Input(0); auto& X = Input(0);
auto& filter = Input(1); auto& filter = Input(1);
auto& bias = Input(2); auto& bias = Input(2);
auto* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(1), H = X.dim32(2), W = X.dim32(3); const int N = X.dim32(0), C = X.dim32(1), H = X.dim32(2), W = X.dim32(3);
const int M = filter.dim32(0); const int M = filter.dim32(0);
@ -132,8 +133,7 @@ class NNPACKConvOp final : public ConvPoolOpBase<CPUContext> {
CAFFE_ENFORCE(filter.dim32(3) == this->kernel_w(), ""); CAFFE_ENFORCE(filter.dim32(3) == this->kernel_w(), "");
CAFFE_ENFORCE(bias.numel() == M, ""); CAFFE_ENFORCE(bias.numel() == M, "");
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, filter.dim32(0)); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
auto* Y = Output(0, sizes, at::dtype<float>());
const int oH = Y->dim32(2), oW = Y->dim32(3); const int oH = Y->dim32(2), oW = Y->dim32(3);
if (N > 1) { if (N > 1) {
@ -250,10 +250,10 @@ class NNPACKMaxPoolOp final : public ConvPoolOpBase<CPUContext> {
bool RunOnDeviceWithOrderNCHW() override { bool RunOnDeviceWithOrderNCHW() override {
auto& X = Input(0); auto& X = Input(0);
auto* Y = Output(0);
CAFFE_ENFORCE(X.dim() == 4, ""); CAFFE_ENFORCE(X.dim() == 4, "");
const int H = X.dim32(2), W = X.dim32(3); const int H = X.dim32(2), W = X.dim32(3);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, X.dim32(1)); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, X.dim32(1));
auto* Y = Output(0, sizes, at::dtype<float>());
std::vector<int> pads( std::vector<int> pads(
{this->pad_t(), this->pad_b(), this->pad_l(), this->pad_r()}); {this->pad_t(), this->pad_b(), this->pad_l(), this->pad_r()});
std::vector<int> stride({this->stride_h(), this->stride_w()}); std::vector<int> stride({this->stride_h(), this->stride_w()});

View File

@ -196,8 +196,8 @@ class MaxPoolRTCOp final : public ConvPoolOpBase<CUDAContext> {
bool RunOnDeviceWithOrderNCHW() override { bool RunOnDeviceWithOrderNCHW() override {
auto& X = Input(0); auto& X = Input(0);
auto output_sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, X.dim32(1)); auto* Y = Output(0);
auto* Y = Output(0, output_sizes, at::dtype<float>()); ConvPoolOpBase::SetOutputSize(X, Y, X.dim32(1));
if (input_dims_ != X.sizes()) { if (input_dims_ != X.sizes()) {
// recompile // recompile

View File

@ -257,10 +257,11 @@ void computeOutputHW(
int* OH, int* OH,
int* OW) { int* OW) {
Tensor input = caffe2::empty({1, 1, H, W}, at::dtype<float>().device(CPU)); Tensor input = caffe2::empty({1, 1, H, W}, at::dtype<float>().device(CPU));
auto sizes = op->GetOutputSize(input, 1); Tensor output(CPU);
CAFFE_ENFORCE_EQ(sizes.size(), 4); op->SetOutputSize(input, &output, 1);
*OH = sizes[2]; CAFFE_ENFORCE_EQ(output.dim(), 4);
*OW = sizes[3]; *OH = output.size(2);
*OW = output.size(3);
} }
constexpr int computeMPSAlignOffset(int kernel, int pad) { constexpr int computeMPSAlignOffset(int kernel, int pad) {

View File

@ -516,13 +516,13 @@ template <typename T_X, typename T_W, typename T_B, typename T_Y>
bool CudnnConvOp::DoRunWithType() { bool CudnnConvOp::DoRunWithType() {
auto& X = Input(INPUT); auto& X = Input(INPUT);
auto& filter = Input(FILTER); auto& filter = Input(FILTER);
auto* Y = Output(0);
// Figure out the output shape // Figure out the output shape
CAFFE_ENFORCE(X.dim() >= 3 && X.dim() <= 5); CAFFE_ENFORCE(X.dim() >= 3 && X.dim() <= 5);
CAFFE_ENFORCE(filter.dim() >= 3 && filter.dim() <= 5); CAFFE_ENFORCE(filter.dim() >= 3 && filter.dim() <= 5);
const int M = filter.dim32(0); const int M = filter.dim32(0);
auto output_sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, M); ConvPoolOpBase<CUDAContext>::SetOutputSize(X, Y, M);
auto* Y = Output(0, output_sizes, at::dtype<T_Y>());
int N = 0, C = 0, H = 0, W = 0, D = 0, H_out = 0, W_out = 0, D_out = 0; int N = 0, C = 0, H = 0, W = 0, D = 0, H_out = 0, W_out = 0, D_out = 0;
int group_offset_X = 0, group_offset_Y = 0; int group_offset_X = 0, group_offset_Y = 0;

View File

@ -34,14 +34,14 @@ template <typename T>
bool EigenConvOp<T>::RunOnDeviceWithOrderNCHW() { bool EigenConvOp<T>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(INPUT); auto& X = Input(INPUT);
auto& filter = Input(FILTER); auto& filter = Input(FILTER);
auto* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(1), H = X.dim32(2), W = X.dim32(3); const int N = X.dim32(0), C = X.dim32(1), H = X.dim32(2), W = X.dim32(3);
CAFFE_ENFORCE(4 == filter.dim()); CAFFE_ENFORCE(4 == filter.dim());
const int M = filter.dim32(0); const int M = filter.dim32(0);
CAFFE_ENFORCE(filter.dim32(1) == C); CAFFE_ENFORCE(filter.dim32(1) == C);
CAFFE_ENFORCE(filter.dim32(2) == kernel_h()); CAFFE_ENFORCE(filter.dim32(2) == kernel_h());
CAFFE_ENFORCE(filter.dim32(3) == kernel_w()); CAFFE_ENFORCE(filter.dim32(3) == kernel_w());
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, filter.dim32(0)); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
auto* Y = Output(0, sizes, at::dtype<T>());
Eigen::array<int64_t, 4> kernel_shuffles Eigen::array<int64_t, 4> kernel_shuffles
{ {int64_t(2), int64_t(3), int64_t(1), int64_t(0)} }; { {int64_t(2), int64_t(3), int64_t(1), int64_t(0)} };
Eigen::array<int64_t, 4> input_shuffles Eigen::array<int64_t, 4> input_shuffles
@ -128,14 +128,14 @@ template <typename T>
bool EigenConvOp<T>::RunOnDeviceWithOrderNHWC() { bool EigenConvOp<T>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(INPUT); auto& X = Input(INPUT);
auto& filter = Input(FILTER); auto& filter = Input(FILTER);
auto* Y = Output(0);
const int N = X.dim32(0), H = X.dim32(1), W = X.dim32(2), C = X.dim32(3); const int N = X.dim32(0), H = X.dim32(1), W = X.dim32(2), C = X.dim32(3);
CAFFE_ENFORCE(4 == filter.dim()); CAFFE_ENFORCE(4 == filter.dim());
const int M = filter.dim32(0); const int M = filter.dim32(0);
CAFFE_ENFORCE(filter.dim32(1) == kernel_h()); CAFFE_ENFORCE(filter.dim32(1) == kernel_h());
CAFFE_ENFORCE(filter.dim32(2) == kernel_w()); CAFFE_ENFORCE(filter.dim32(2) == kernel_w());
CAFFE_ENFORCE(filter.dim32(3) == C); CAFFE_ENFORCE(filter.dim32(3) == C);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, filter.dim32(0)); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
auto* Y = Output(0, sizes, at::dtype<T>());
// Eigen expects filter to be of shape (kernel_h, kernel_w, C, M) for // Eigen expects filter to be of shape (kernel_h, kernel_w, C, M) for
// optimization purposes, so we will create a temp one. // optimization purposes, so we will create a temp one.
Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic> temp_filter( Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic> temp_filter(

View File

@ -21,6 +21,7 @@ template <typename T, class Context>
bool ConvOp<T, Context>::RunOnDeviceWithOrderNCHW() { bool ConvOp<T, Context>::RunOnDeviceWithOrderNCHW() {
const auto& X = Input(INPUT); const auto& X = Input(INPUT);
const auto& filter = Input(FILTER); const auto& filter = Input(FILTER);
auto* Y = Output(0);
const int N = X.dim32(0); const int N = X.dim32(0);
const int C = X.dim32(1); const int C = X.dim32(1);
const int G = group_; const int G = group_;
@ -43,8 +44,7 @@ bool ConvOp<T, Context>::RunOnDeviceWithOrderNCHW() {
CAFFE_ENFORCE_EQ(filter.dim32(i + 2), kernel_[i]); CAFFE_ENFORCE_EQ(filter.dim32(i + 2), kernel_[i]);
kernel_size *= kernel_[i]; kernel_size *= kernel_[i];
} }
auto output_sizes = ConvPoolOpBase<Context>::GetOutputSize(X, M); ConvPoolOpBase<Context>::SetOutputSize(X, Y, M);
auto* Y = Output(0, output_sizes, at::dtype<T>());
const vector<int> X_dims = GetDims(X); const vector<int> X_dims = GetDims(X);
const vector<int> Y_dims = GetDims(*Y); const vector<int> Y_dims = GetDims(*Y);
const int X_HxW = X.numel() / (N * C); const int X_HxW = X.numel() / (N * C);
@ -190,6 +190,7 @@ bool ConvOp<T, Context>::RunOnDeviceWithOrderNHWC() {
"Only 1-3d convolution is supported for NHWC storage type"); "Only 1-3d convolution is supported for NHWC storage type");
const Tensor& X = Input(INPUT); const Tensor& X = Input(INPUT);
const auto& filter = Input(FILTER); const auto& filter = Input(FILTER);
Tensor* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(X.dim() - 1); const int N = X.dim32(0), C = X.dim32(X.dim() - 1);
const int G = group_; const int G = group_;
CAFFE_ENFORCE_EQ(X.dim(), filter.dim()); CAFFE_ENFORCE_EQ(X.dim(), filter.dim());
@ -211,8 +212,7 @@ bool ConvOp<T, Context>::RunOnDeviceWithOrderNHWC() {
CAFFE_ENFORCE_EQ(filter.dim32(i + 1), kernel_[i]); CAFFE_ENFORCE_EQ(filter.dim32(i + 1), kernel_[i]);
kernel_size *= kernel_[i]; kernel_size *= kernel_[i];
} }
auto output_sizes = ConvPoolOpBase<Context>::GetOutputSize(X, M); ConvPoolOpBase<Context>::SetOutputSize(X, Y, M);
auto* Y = Output(0, output_sizes, at::dtype<T>());
const vector<int> Y_dims = GetDims(*Y); const vector<int> Y_dims = GetDims(*Y);
const int X_HxW = X.numel() / (N * C); const int X_HxW = X.numel() / (N * C);
const int Y_HxW = Y->numel() / (N * M); const int Y_HxW = Y->numel() / (N * M);

View File

@ -207,7 +207,7 @@ class ConvPoolOpBase : public Operator<Context> {
return size; return size;
} }
// Gets the output size. The output channel is manually provided since // Sets the output size. The output channel is manually provided since
// it may not be identical to the input channels. // it may not be identical to the input channels.
// This function can be used in the forward functions to obtain the output // This function can be used in the forward functions to obtain the output
// sizes. // sizes.
@ -215,7 +215,8 @@ class ConvPoolOpBase : public Operator<Context> {
// implementations that do not use first-class Tensor objects, such as the // implementations that do not use first-class Tensor objects, such as the
// MKL operator. One can still call this function with dummy // MKL operator. One can still call this function with dummy
// Tensor objects in order to obtain the sizes. // Tensor objects in order to obtain the sizes.
std::vector<int64_t> GetOutputSize(const Tensor& input, int output_channel) { // TODO: passing sizes directly rather than Tensor
void SetOutputSize(const Tensor& input, Tensor* output, int output_channel) {
CAFFE_ENFORCE(input.numel() > 0); CAFFE_ENFORCE(input.numel() > 0);
vector<int> output_dims; vector<int> output_dims;
int N = input.dim32(0); int N = input.dim32(0);
@ -240,7 +241,7 @@ class ConvPoolOpBase : public Operator<Context> {
output_dims.insert(output_dims.begin(), N); output_dims.insert(output_dims.begin(), N);
output_dims.push_back(output_channel); output_dims.push_back(output_channel);
} }
return std::vector<int64_t>(output_dims.cbegin(), output_dims.cend()); output->Resize(output_dims);
} }
// Helper function that is also called from OperatorSchema. Modified // Helper function that is also called from OperatorSchema. Modified

View File

@ -17,6 +17,7 @@ bool DeformConvOp<T, Context>::RunOnDeviceWithOrderNCHW() {
const Tensor& X = Input(INPUT); const Tensor& X = Input(INPUT);
const Tensor& offset = Input(OFFSET); const Tensor& offset = Input(OFFSET);
auto& filter = Input(FILTER); auto& filter = Input(FILTER);
Tensor* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(1); const int N = X.dim32(0), C = X.dim32(1);
CAFFE_ENFORCE_EQ(X.dim(), filter.ndim()); CAFFE_ENFORCE_EQ(X.dim(), filter.ndim());
const int M = filter.dim32(0); const int M = filter.dim32(0);
@ -81,8 +82,7 @@ bool DeformConvOp<T, Context>::RunOnDeviceWithOrderNCHW() {
kernel_dims_size *= kernel_[i]; kernel_dims_size *= kernel_[i];
} }
auto output_sizes = ConvPoolOpBase<Context>::GetOutputSize(X, filter.dim32(0)); ConvPoolOpBase<Context>::SetOutputSize(X, Y, filter.dim32(0));
auto* Y = Output(0, output_sizes, at::dtype<T>());
const vector<int> input_dims = GetDims(X); const vector<int> input_dims = GetDims(X);
const vector<int> output_dims = GetDims(*Y); const vector<int> output_dims = GetDims(*Y);
@ -196,8 +196,8 @@ bool DeformConvGradientOp<T, Context>::RunOnDeviceWithOrderNCHW() {
auto& offset = Input(OFFSET); auto& offset = Input(OFFSET);
auto& filter = Input(FILTER); auto& filter = Input(FILTER);
auto& dY = Input(OUTPUT_GRAD); auto& dY = Input(OUTPUT_GRAD);
const int N = X.dim32(0), C = X.dim32(1); const int N = X.dim32(0), C = X.dim32(1);
const vector<int> input_dims = this->GetDims(X); const vector<int> input_dims = this->GetDims(X);
@ -303,7 +303,7 @@ bool DeformConvGradientOp<T, Context>::RunOnDeviceWithOrderNCHW() {
T* dbias_data = nullptr; T* dbias_data = nullptr;
if (!no_bias_) { if (!no_bias_) {
auto* dbias = Output(BIAS_OR_INPUT_GRAD, {M}, at::dtype<T>()); auto* dbias = Output(BIAS_OR_INPUT_GRAD, {M}, at::dtype<T>());
if (bias_multiplier_.size() != output_image_size) { if (bias_multiplier_.size() != output_image_size) {
// If the helper bias multiplier is not M, reshape and fill it with one. // If the helper bias multiplier is not M, reshape and fill it with one.
@ -323,7 +323,7 @@ bool DeformConvGradientOp<T, Context>::RunOnDeviceWithOrderNCHW() {
T* dXdata = nullptr; T* dXdata = nullptr;
if (OutputSize() == 4 || (no_bias_ && (OutputSize() == 3))) { if (OutputSize() == 4 || (no_bias_ && (OutputSize() == 3))) {
auto* dX = Output(no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD, X.sizes(), at::dtype<T>()); auto* dX = Output(no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD, X.sizes(), at::dtype<T>());
dXdata = dX->template mutable_data<T>(); dXdata = dX->template mutable_data<T>();
math::Set<T, Context>(dX->size(), 0, dXdata, &context_); math::Set<T, Context>(dX->size(), 0, dXdata, &context_);

View File

@ -288,6 +288,7 @@ class Depthwise3x3ConvOp final : public ConvPoolOpBase<CUDAContext> {
bool RunOnDeviceWithOrderNCHW() override { bool RunOnDeviceWithOrderNCHW() override {
const Tensor& X = Input(0); const Tensor& X = Input(0);
auto& filter = Input(1); auto& filter = Input(1);
Tensor* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(1); const int N = X.dim32(0), C = X.dim32(1);
CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim()); CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim());
const int M = filter.dim32(0); const int M = filter.dim32(0);
@ -299,8 +300,7 @@ class Depthwise3x3ConvOp final : public ConvPoolOpBase<CUDAContext> {
CAFFE_ENFORCE_EQ(this->kernel_w(), 3); CAFFE_ENFORCE_EQ(this->kernel_w(), 3);
CAFFE_ENFORCE_EQ(this->kernel_h(), 3); CAFFE_ENFORCE_EQ(this->kernel_h(), 3);
CAFFE_ENFORCE_EQ(this->stride_h(), this->stride_w()); CAFFE_ENFORCE_EQ(this->stride_h(), this->stride_w());
auto sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, filter.dim32(0)); ConvPoolOpBase<CUDAContext>::SetOutputSize(X, Y, filter.dim32(0));
Tensor* Y = Output(0, sizes, at::dtype<float>());
DepthwiseArgs args; DepthwiseArgs args;
args.batch = X.dim32(0); args.batch = X.dim32(0);
args.in_rows = X.dim32(2); args.in_rows = X.dim32(2);
@ -455,7 +455,7 @@ class Depthwise3x3ConvGradientOp final : public ConvPoolOpBase<CUDAContext> {
M, M,
dY.dim32(2), dY.dim32(2),
dY.dim32(3))); dY.dim32(3)));
auto* dbias = Output(BIAS_OR_INPUT_GRAD, {M}, at::dtype<float>()); auto* dbias = Output(BIAS_OR_INPUT_GRAD, {M}, at::dtype<float>());
CUDNN_ENFORCE(cudnnConvolutionBackwardBias( CUDNN_ENFORCE(cudnnConvolutionBackwardBias(
cudnn_wrapper_.inline_cudnn_handle(), cudnn_wrapper_.inline_cudnn_handle(),

View File

@ -205,6 +205,7 @@ template <typename T_X, typename T_W, typename T_B, typename MATH, typename T_Y>
bool MIOPENConvOp::DoRunWithType() { bool MIOPENConvOp::DoRunWithType() {
auto& X = Input(INPUT); auto& X = Input(INPUT);
auto& Weight = Input(FILTER); auto& Weight = Input(FILTER);
auto* Y = Output(0);
// Figure out the output shape // Figure out the output shape
CAFFE_ENFORCE(X.ndim() >= 3 && X.ndim() <= 5); CAFFE_ENFORCE(X.ndim() >= 3 && X.ndim() <= 5);
@ -213,8 +214,7 @@ bool MIOPENConvOp::DoRunWithType() {
"Conv op with MIOpen engine is supported only for 2D convolutions"); "Conv op with MIOpen engine is supported only for 2D convolutions");
const int M = Weight.dim32(0); const int M = Weight.dim32(0);
auto sizes = ConvPoolOpBase<HIPContext>::GetOutputSize(X, M); ConvPoolOpBase<HIPContext>::SetOutputSize(X, Y, M);
auto* Y = Output(0, sizes, at::dtype<T_Y>());
int N = X.dim32(0); int N = X.dim32(0);
int C = X.dim32(1); int C = X.dim32(1);

View File

@ -61,6 +61,7 @@ class MIOPENPoolOp : public ConvPoolOpBase<HIPContext> {
template <typename T, typename M> template <typename T, typename M>
bool DoRunWithType() { bool DoRunWithType() {
auto& X = Input(0); auto& X = Input(0);
auto* Y = Output(0);
int N = 0, C = 0, H = 0, W = 0, D = 0; int N = 0, C = 0, H = 0, W = 0, D = 0;
int N_out = 0, C_out = 0, H_out = 0, W_out = 0; int N_out = 0, C_out = 0, H_out = 0, W_out = 0;
CAFFE_ENFORCE(X.ndim() >= 4 && X.ndim() <= 5); CAFFE_ENFORCE(X.ndim() >= 4 && X.ndim() <= 5);
@ -68,8 +69,7 @@ class MIOPENPoolOp : public ConvPoolOpBase<HIPContext> {
C = X.dim32(1); C = X.dim32(1);
H = X.dim32(2); H = X.dim32(2);
W = X.ndim() > 3 ? X.dim32(3) : 1; W = X.ndim() > 3 ? X.dim32(3) : 1;
auto sizes = ConvPoolOpBase::GetOutputSize(X, C); ConvPoolOpBase::SetOutputSize(X, Y, C);
auto* Y = Output(0, sizes, at::dtype<T>());
N_out = Y->dim32(0); N_out = Y->dim32(0);
C_out = Y->dim32(1); C_out = Y->dim32(1);

View File

@ -20,6 +20,7 @@ template <typename T, class Context>
bool LocallyConnectedOp<T, Context>::RunOnDeviceWithOrderNCHW() { bool LocallyConnectedOp<T, Context>::RunOnDeviceWithOrderNCHW() {
const auto& X = Input(INPUT); const auto& X = Input(INPUT);
const auto& filter = Input(FILTER); const auto& filter = Input(FILTER);
auto* Y = Output(0);
const int image_ndim = X.dim() - 2; const int image_ndim = X.dim() - 2;
CAFFE_ENFORCE_EQ(X.dim() + image_ndim, filter.dim()); CAFFE_ENFORCE_EQ(X.dim() + image_ndim, filter.dim());
lc_op_util::ShapeParams shape; lc_op_util::ShapeParams shape;
@ -40,8 +41,7 @@ bool LocallyConnectedOp<T, Context>::RunOnDeviceWithOrderNCHW() {
0, 0,
"The number of output channels is not divisible by group."); "The number of output channels is not divisible by group.");
auto output_sizes = ConvPoolOpBase<Context>::GetOutputSize(X, shape.M); ConvPoolOpBase<Context>::SetOutputSize(X, Y, shape.M);
auto* Y = Output(0, output_sizes, at::dtype<T>());
shape.input_image_size = GetDimsSize(X); shape.input_image_size = GetDimsSize(X);
shape.output_image_size = GetDimsSize(*Y); shape.output_image_size = GetDimsSize(*Y);
const std::vector<int> output_image_dims = GetDims(*Y); const std::vector<int> output_image_dims = GetDims(*Y);
@ -109,6 +109,7 @@ template <typename T, class Context>
bool LocallyConnectedOp<T, Context>::RunOnDeviceWithOrderNHWC() { bool LocallyConnectedOp<T, Context>::RunOnDeviceWithOrderNHWC() {
const auto& X = Input(INPUT); const auto& X = Input(INPUT);
const auto& filter = Input(FILTER); const auto& filter = Input(FILTER);
auto* Y = Output(0);
CAFFE_ENFORCE_EQ( CAFFE_ENFORCE_EQ(
kernel_.size(), kernel_.size(),
2, 2,
@ -123,8 +124,7 @@ bool LocallyConnectedOp<T, Context>::RunOnDeviceWithOrderNHWC() {
CAFFE_ENFORCE_EQ(filter.dim32(image_ndim + 1), kernel_h()); CAFFE_ENFORCE_EQ(filter.dim32(image_ndim + 1), kernel_h());
CAFFE_ENFORCE_EQ(filter.dim32(image_ndim + 2), kernel_w()); CAFFE_ENFORCE_EQ(filter.dim32(image_ndim + 2), kernel_w());
CAFFE_ENFORCE_EQ(filter.dim32(image_ndim + 3), shape.C); CAFFE_ENFORCE_EQ(filter.dim32(image_ndim + 3), shape.C);
auto sizes = ConvPoolOpBase<Context>::GetOutputSize(X, shape.M); ConvPoolOpBase<Context>::SetOutputSize(X, Y, shape.M);
auto* Y = Output(0, sizes, at::dtype<T>());
shape.input_image_size = GetDimsSize(X); shape.input_image_size = GetDimsSize(X);
shape.output_image_size = GetDimsSize(*Y); shape.output_image_size = GetDimsSize(*Y);

View File

@ -13,8 +13,8 @@ struct LpPoolFunctor {
template <> template <>
bool PoolOp<float, CPUContext, LpPoolFunctor>::RunOnDeviceWithOrderNCHW() { bool PoolOp<float, CPUContext, LpPoolFunctor>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(0); auto& X = Input(0);
auto sizes = ConvPoolOpBase::GetOutputSize(X, X.dim32(1)); auto* Y = Output(0);
auto* Y = Output(0, sizes, at::dtype<float>()); ConvPoolOpBase::SetOutputSize(X, Y, X.dim32(1));
const auto p = OperatorBase::GetSingleArgument<float>("p", 2.0); const auto p = OperatorBase::GetSingleArgument<float>("p", 2.0);
const auto inv_p = 1.0 / p; const auto inv_p = 1.0 / p;
@ -59,11 +59,11 @@ bool PoolOp<float, CPUContext, LpPoolFunctor>::RunOnDeviceWithOrderNCHW() {
template <> template <>
bool PoolOp<float, CPUContext, LpPoolFunctor>::RunOnDeviceWithOrderNHWC() { bool PoolOp<float, CPUContext, LpPoolFunctor>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(0); auto& X = Input(0);
auto* Y = Output(0);
int height = X.dim32(1); int height = X.dim32(1);
int width = X.dim32(2); int width = X.dim32(2);
int channels = X.dim32(3); int channels = X.dim32(3);
auto sizes = ConvPoolOpBase::GetOutputSize(X, channels); ConvPoolOpBase::SetOutputSize(X, Y, channels);
auto* Y = Output(0, sizes, at::dtype<float>());
const auto p = OperatorBase::GetSingleArgument<float>("p", 2.0); const auto p = OperatorBase::GetSingleArgument<float>("p", 2.0);
const auto inv_p = 1.0 / p; const auto inv_p = 1.0 / p;

View File

@ -215,9 +215,8 @@ __global__ void LpPoolBackwardNHWC(
template <> template <>
bool PoolOp<float, CUDAContext, LpPoolFunctor>::RunOnDeviceWithOrderNCHW() { bool PoolOp<float, CUDAContext, LpPoolFunctor>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(0); auto& X = Input(0);
auto sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, X.dim32(1)); auto* Y = Output(0);
auto* Y = Output(0, sizes, at::dtype<float>()); ConvPoolOpBase<CUDAContext>::SetOutputSize(X, Y, X.dim32(1));
int output_size = Y->size(); int output_size = Y->size();
LpPoolForwardNCHW<float> LpPoolForwardNCHW<float>
<<<CAFFE_GET_BLOCKS(output_size), <<<CAFFE_GET_BLOCKS(output_size),
@ -246,9 +245,8 @@ bool PoolOp<float, CUDAContext, LpPoolFunctor>::RunOnDeviceWithOrderNCHW() {
template <> template <>
bool PoolOp<float, CUDAContext, LpPoolFunctor>::RunOnDeviceWithOrderNHWC() { bool PoolOp<float, CUDAContext, LpPoolFunctor>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(0); auto& X = Input(0);
auto sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, X.dim32(3)); auto* Y = Output(0);
auto* Y = Output(0, sizes, at::dtype<float>()); ConvPoolOpBase<CUDAContext>::SetOutputSize(X, Y, X.dim32(3));
int output_size = Y->size(); int output_size = Y->size();
LpPoolForwardNHWC<float> LpPoolForwardNHWC<float>
<<<CAFFE_GET_BLOCKS(output_size), <<<CAFFE_GET_BLOCKS(output_size),

View File

@ -108,11 +108,10 @@ __global__ void MaxPoolBackward(
template <typename T> template <typename T>
bool MaxPoolWithIndexOp::DoRunWithType() { bool MaxPoolWithIndexOp::DoRunWithType() {
auto& X = Input(0); auto& X = Input(0);
auto* Y = Output(0);
auto* mask = Output(1); auto* mask = Output(1);
auto sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, X.dim32(1)); ConvPoolOpBase<CUDAContext>::SetOutputSize(X, Y, X.dim32(1));
auto* Y = Output(0, sizes, at::dtype<T>());
int output_size = Y->size(); int output_size = Y->size();
mask->Resize(output_size); mask->Resize(output_size);

View File

@ -22,11 +22,11 @@ using std::max;
template <> template <>
bool PadImageOp<float, CPUContext>::RunOnDeviceWithOrderNCHW() { bool PadImageOp<float, CPUContext>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(0); auto& X = Input(0);
auto* Y = Output(0);
int channels = X.dim32(1); int channels = X.dim32(1);
int height = X.dim32(2); int height = X.dim32(2);
int width = X.dim32(3); int width = X.dim32(3);
auto sizes = ConvPoolOpBase::GetOutputSize(X, channels); ConvPoolOpBase::SetOutputSize(X, Y, channels);
auto* Y = Output(0, sizes, at::dtype<float>());
const float* Xdata = X.data<float>(); const float* Xdata = X.data<float>();
float* Ydata = Y->template mutable_data<float>(); float* Ydata = Y->template mutable_data<float>();
@ -160,11 +160,11 @@ bool PadImageOp<float, CPUContext>::RunOnDeviceWithOrderNCHW() {
template <> template <>
bool PadImageOp<float, CPUContext>::RunOnDeviceWithOrderNHWC() { bool PadImageOp<float, CPUContext>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(0); auto& X = Input(0);
auto* Y = Output(0);
int height = X.dim32(1); int height = X.dim32(1);
int width = X.dim32(2); int width = X.dim32(2);
int channels = X.dim32(3); int channels = X.dim32(3);
auto sizes = ConvPoolOpBase::GetOutputSize(X, channels); ConvPoolOpBase::SetOutputSize(X, Y, channels);
auto* Y = Output(0, sizes, at::dtype<float>());
const float* Xdata = X.data<float>(); const float* Xdata = X.data<float>();
float* Ydata = Y->template mutable_data<float>(); float* Ydata = Y->template mutable_data<float>();

View File

@ -251,13 +251,12 @@ __global__ void PadImageGradientEdgeNHWC(
template <> template <>
bool PadImageOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() { bool PadImageOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(0); auto& X = Input(0);
auto* Y = Output(0);
const int num = X.dim32(0); const int num = X.dim32(0);
const int channels = X.dim32(1); const int channels = X.dim32(1);
const int height = X.dim32(2); const int height = X.dim32(2);
const int width = X.dim32(3); const int width = X.dim32(3);
auto sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, channels); ConvPoolOpBase<CUDAContext>::SetOutputSize(X, Y, channels);
auto* Y = Output(0, sizes, at::dtype<float>());
const int output_size = Y->size(); const int output_size = Y->size();
const int padded_height = Y->dim32(2); const int padded_height = Y->dim32(2);
const int padded_width = Y->dim32(3); const int padded_width = Y->dim32(3);
@ -328,13 +327,12 @@ bool PadImageOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() {
template<> template<>
bool PadImageOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() { bool PadImageOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(0); auto& X = Input(0);
auto* Y = Output(0);
const int num = X.dim32(0); const int num = X.dim32(0);
const int height = X.dim32(1); const int height = X.dim32(1);
const int width = X.dim32(2); const int width = X.dim32(2);
const int channels = X.dim32(3); const int channels = X.dim32(3);
auto sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, channels); ConvPoolOpBase<CUDAContext>::SetOutputSize(X, Y, channels);
auto* Y = Output(0, sizes, at::dtype<float>());
const int output_size = Y->size(); const int output_size = Y->size();
const int padded_height = Y->dim32(1); const int padded_height = Y->dim32(1);
const int padded_width = Y->dim32(2); const int padded_width = Y->dim32(2);
@ -405,7 +403,7 @@ bool PadImageOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() {
template<> template<>
bool PadImageGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() { bool PadImageGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() {
auto& dY = Input(0); auto& dY = Input(0);
auto* dX = Output(0, { dY.dim32(0), auto* dX = Output(0, { dY.dim32(0),
dY.dim32(1), dY.dim32(1),
dY.dim32(2) - pad_t() - pad_b(), dY.dim32(2) - pad_t() - pad_b(),
@ -485,7 +483,7 @@ bool PadImageGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() {
template<> template<>
bool PadImageGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() { bool PadImageGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() {
auto& dY = Input(0); auto& dY = Input(0);
auto* dX = Output(0, { dY.dim32(0), auto* dX = Output(0, { dY.dim32(0),
dY.dim32(1) - pad_t() - pad_b(), dY.dim32(1) - pad_t() - pad_b(),
dY.dim32(2) - pad_l() - pad_r(), dY.dim32(2) - pad_l() - pad_r(),

View File

@ -36,10 +36,10 @@ class PoolOp final : public ConvPoolOpBase<Context> {
bool RunOnDeviceWithOrderNCHW() override { bool RunOnDeviceWithOrderNCHW() override {
const auto& X = Input(0); const auto& X = Input(0);
auto* Y = Output(0);
const int N = X.dim32(0); const int N = X.dim32(0);
const int C = X.dim32(1); const int C = X.dim32(1);
auto sizes = ConvPoolOpBase<Context>::GetOutputSize(X, C); ConvPoolOpBase<Context>::SetOutputSize(X, Y, C);
auto* Y = Output(0, sizes, at::dtype<T>());
const T* X_data = X.template data<T>(); const T* X_data = X.template data<T>();
T* Y_data = Y->template mutable_data<T>(); T* Y_data = Y->template mutable_data<T>();
if (global_pooling_) { if (global_pooling_) {
@ -65,11 +65,11 @@ class PoolOp final : public ConvPoolOpBase<Context> {
bool RunOnDeviceWithOrderNHWC() override { bool RunOnDeviceWithOrderNHWC() override {
const auto& X = Input(0); const auto& X = Input(0);
auto* Y = Output(0);
const int ndim = X.ndim(); const int ndim = X.ndim();
const int N = X.dim32(0); const int N = X.dim32(0);
const int C = X.dim32(ndim - 1); const int C = X.dim32(ndim - 1);
auto sizes = ConvPoolOpBase<Context>::GetOutputSize(X, C); ConvPoolOpBase<Context>::SetOutputSize(X, Y, C);
auto* Y = Output(0, sizes, at::dtype<T>());
const T* X_data = X.template data<T>(); const T* X_data = X.template data<T>();
T* Y_data = Y->template mutable_data<T>(); T* Y_data = Y->template mutable_data<T>();
if (global_pooling_) { if (global_pooling_) {

View File

@ -99,11 +99,11 @@ class CuDNNPoolOp final : public ConvPoolOpBase<CUDAContext> {
template <typename T> template <typename T>
bool DoRunWithType() { bool DoRunWithType() {
const auto& X = Input(0); const auto& X = Input(0);
auto* Y = Output(0);
const int ndim = X.ndim(); const int ndim = X.ndim();
const int N = X.dim32(0); const int N = X.dim32(0);
const int C = order_ == StorageOrder::NCHW ? X.dim32(1) : X.dim32(ndim - 1); const int C = order_ == StorageOrder::NCHW ? X.dim32(1) : X.dim32(ndim - 1);
auto sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, C); ConvPoolOpBase<CUDAContext>::SetOutputSize(X, Y, C);
auto* Y = Output(0, sizes, at::dtype<T>());
const T* X_data = X.template data<T>(); const T* X_data = X.template data<T>();
T* Y_data = Y->template mutable_data<T>(); T* Y_data = Y->template mutable_data<T>();

View File

@ -44,8 +44,7 @@ class Int8AveragePoolOp final : public ConvPoolOpBase<CPUContext> {
CHECK_EQ(X.t.dim(), 4); CHECK_EQ(X.t.dim(), 4);
const int channels = X.t.dim32(3); const int channels = X.t.dim32(3);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X.t, channels); ConvPoolOpBase<CPUContext>::SetOutputSize(X.t, &(Y->t), channels);
ReinitializeTensor(&(Y->t), sizes, at::dtype<uint8_t>().device(CPU));
initQNNPACK(); initQNNPACK();

View File

@ -43,8 +43,7 @@ class Int8ConvOp final : public ConvPoolOpBase<CPUContext> {
this->template GetSingleArgument<int>("Y_zero_point", 0); this->template GetSingleArgument<int>("Y_zero_point", 0);
double Y_scale = this->template GetSingleArgument<float>("Y_scale", 1); double Y_scale = this->template GetSingleArgument<float>("Y_scale", 1);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X.t, W.t.dim32(0)); ConvPoolOpBase<CPUContext>::SetOutputSize(X.t, &(Y->t), W.t.dim32(0));
ReinitializeTensor(&(Y->t), sizes, at::dtype<uint8_t>().device(CPU));
Y->scale = Y_scale; Y->scale = Y_scale;
Y->zero_point = Y_offset; Y->zero_point = Y_offset;

View File

@ -42,8 +42,7 @@ class Int8MaxPoolOp final : public ConvPoolOpBase<CPUContext> {
CHECK_EQ(X.t.dim(), 4); CHECK_EQ(X.t.dim(), 4);
const int channels = X.t.dim32(3); const int channels = X.t.dim32(3);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X.t, channels); ConvPoolOpBase<CPUContext>::SetOutputSize(X.t, &(Y->t), channels);
ReinitializeTensor(&(Y->t), sizes, at::dtype<uint8_t>().device(CPU));
initQNNPACK(); initQNNPACK();

View File

@ -102,8 +102,8 @@ bool ConvDNNLowPAcc16Op<ReluFused>::GetQuantizationParameters_() {
const Tensor& X = InputTensorCPU_(INPUT); const Tensor& X = InputTensorCPU_(INPUT);
int N = X.dim32(0); int N = X.dim32(0);
auto sizes = this->GetOutputSize(X, filter.dim32(0)); Tensor* Y = OutputTensorCPU_(0);
Tensor* Y = OutputTensorCPU_(0, sizes, at::dtype<uint8_t>()); this->SetOutputSize(X, Y, filter.dim32(0));
const int output_image_size = this->GetDimsSize(*Y); const int output_image_size = this->GetDimsSize(*Y);
if (N * output_image_size < FLAGS_caffe2_dnnlowp_acc16_m_threshold) { if (N * output_image_size < FLAGS_caffe2_dnnlowp_acc16_m_threshold) {
@ -228,6 +228,7 @@ bool ConvDNNLowPAcc16Op<ReluFused>::RunOnDeviceWithOrderNCHW() {
const Tensor& X = InputTensorCPU_(INPUT); const Tensor& X = InputTensorCPU_(INPUT);
auto& filter = InputTensorCPU_(FILTER); auto& filter = InputTensorCPU_(FILTER);
Tensor* Y = OutputTensorCPU_(0);
const int N = X.dim32(0), C = X.dim32(1); const int N = X.dim32(0), C = X.dim32(1);
CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim()); CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim());
const int M = filter.dim32(0); const int M = filter.dim32(0);
@ -245,8 +246,7 @@ bool ConvDNNLowPAcc16Op<ReluFused>::RunOnDeviceWithOrderNCHW() {
0, 0,
"The number of output channels is not divisible by group."); "The number of output channels is not divisible by group.");
auto sizes = this->GetOutputSize(X, filter.dim32(0)); this->SetOutputSize(X, Y, filter.dim32(0));
Tensor* Y = OutputTensorCPU_(0, sizes, at::dtype<uint8_t>());
const vector<int> input_dims = GetDims(X); const vector<int> input_dims = GetDims(X);
const vector<int> output_dims = GetDims(*Y); const vector<int> output_dims = GetDims(*Y);
@ -618,14 +618,14 @@ bool ConvDNNLowPAcc16Op<ReluFused>::RunOnDeviceWithOrderNHWC() {
const Tensor& X = InputTensorCPU_(INPUT); const Tensor& X = InputTensorCPU_(INPUT);
auto& filter = InputTensorCPU_(FILTER); auto& filter = InputTensorCPU_(FILTER);
Tensor* Y = OutputTensorCPU_(0);
const int N = X.dim32(0), C = X.dim32(X.ndim() - 1); const int N = X.dim32(0), C = X.dim32(X.ndim() - 1);
CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim()); CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim());
const int M = filter.dim32(0); const int M = filter.dim32(0);
CAFFE_ENFORCE_EQ(filter.dim32(filter.ndim() - 1), C / group_); CAFFE_ENFORCE_EQ(filter.dim32(filter.ndim() - 1), C / group_);
auto sizes = this->GetOutputSize(X, filter.dim32(0)); this->SetOutputSize(X, Y, filter.dim32(0));
Tensor* Y = OutputTensorCPU_(0, sizes, at::dtype<uint8_t>());
// The dimension of each kernel // The dimension of each kernel
const int kernel_dim = this->KernelDim_(); const int kernel_dim = this->KernelDim_();
// The output image size is the spatial size of the output. // The output image size is the spatial size of the output.

View File

@ -559,6 +559,7 @@ bool ConvDNNLowPOp<T, ReluFused>::RunOnDeviceWithOrderNCHW() {
const Tensor& X = InputTensorCPU_(INPUT); const Tensor& X = InputTensorCPU_(INPUT);
auto& filter = InputTensorCPU_(FILTER); auto& filter = InputTensorCPU_(FILTER);
Tensor* Y = OutputTensorCPU_(0);
const int N = X.dim32(0), C = X.dim32(1); const int N = X.dim32(0), C = X.dim32(1);
CAFFE_ENFORCE_EQ(X.dim(), filter.dim()); CAFFE_ENFORCE_EQ(X.dim(), filter.dim());
const int M = filter.dim32(0); const int M = filter.dim32(0);
@ -576,8 +577,7 @@ bool ConvDNNLowPOp<T, ReluFused>::RunOnDeviceWithOrderNCHW() {
0, 0,
"The number of output channels is not divisible by group."); "The number of output channels is not divisible by group.");
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, filter.dim32(0)); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
Tensor* Y = OutputTensorCPU_(0, sizes, at::dtype<T>());
const vector<int> input_dims = GetDims(X); const vector<int> input_dims = GetDims(X);
const vector<int> output_dims = GetDims(*Y); const vector<int> output_dims = GetDims(*Y);
@ -1417,6 +1417,7 @@ bool ConvDNNLowPOp<T, ReluFused>::RunOnDeviceWithOrderNHWC() {
const Tensor& X = InputTensorCPU_(INPUT); const Tensor& X = InputTensorCPU_(INPUT);
auto& filter = InputTensorCPU_(FILTER); auto& filter = InputTensorCPU_(FILTER);
Tensor* Y = OutputTensorCPU_(0);
const int C = X.dim32(X.dim() - 1); const int C = X.dim32(X.dim() - 1);
const int G = group_; const int G = group_;
CAFFE_ENFORCE_EQ(X.dim(), filter.dim()); CAFFE_ENFORCE_EQ(X.dim(), filter.dim());
@ -1433,8 +1434,7 @@ bool ConvDNNLowPOp<T, ReluFused>::RunOnDeviceWithOrderNHWC() {
CAFFE_ENFORCE_EQ( CAFFE_ENFORCE_EQ(
M % G, 0, "The number of output channels is not divisible by group."); M % G, 0, "The number of output channels is not divisible by group.");
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, filter.dim32(0)); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
Tensor* Y = OutputTensorCPU_(0, sizes, at::dtype<T>());
// The col buffer is stored in HWC order as well - kernel_dim, and the height // The col buffer is stored in HWC order as well - kernel_dim, and the height
// and width. // and width.

View File

@ -61,12 +61,6 @@ class ConvPoolDNNLowPOpBase : public ConvPoolOpBase<CPUContext> {
return &Outputs()[idx]->template GetMutable<int8::Int8TensorCPU>()->t; return &Outputs()[idx]->template GetMutable<int8::Int8TensorCPU>()->t;
} }
Tensor* OutputTensorCPU_(int idx, at::IntList dims, at::TensorOptions options) {
auto* t = &Outputs()[idx]->template GetMutable<int8::Int8TensorCPU>()->t;
ReinitializeTensor(t, dims, options.device(CPU));
return t;
}
T* GetQuantizedOutputData_() { T* GetQuantizedOutputData_() {
return OutputTensorCPU_(0)->template mutable_data<T>(); return OutputTensorCPU_(0)->template mutable_data<T>();
} }

View File

@ -115,16 +115,6 @@ class DNNLowPOp : public Operator<CPUContext> {
} }
} }
Tensor* OutputTensorCPU_(int idx, at::IntList dims, at::TensorOptions options) {
if (dequantize_output_) {
return Output(idx, dims, options.device(CPU));
} else {
auto* t = &Outputs()[idx]->template GetMutable<int8::Int8TensorCPU>()->t;
ReinitializeTensor(t, dims, options.device(CPU));
return t;
}
}
T* GetQuantizedOutputData_() { T* GetQuantizedOutputData_() {
if (dequantize_output_) { if (dequantize_output_) {
out_temp_.resize(Output(0)->numel()); out_temp_.resize(Output(0)->numel());

View File

@ -100,8 +100,8 @@ class AveragePoolDnnLowPOp final
GetOutputQuantizationParams_(); GetOutputQuantizationParams_();
auto& X = InputTensorCPU_(0); auto& X = InputTensorCPU_(0);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, X.dim32(1)); auto* Y = OutputTensorCPU_(0);
auto* Y = OutputTensorCPU_(0, sizes, at::dtype<T>()); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, X.dim32(1));
T* Ydata = GetQuantizedOutputData_(); T* Ydata = GetQuantizedOutputData_();
@ -238,9 +238,9 @@ class AveragePoolDnnLowPOp final
GetOutputQuantizationParams_(); GetOutputQuantizationParams_();
auto& X = InputTensorCPU_(0); auto& X = InputTensorCPU_(0);
auto* Y = OutputTensorCPU_(0);
int channels = X.dim32(X.ndim() - 1); int channels = X.dim32(X.ndim() - 1);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, channels); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, channels);
auto* Y = OutputTensorCPU_(0, sizes, at::dtype<T>());
T* Ydata = GetQuantizedOutputData_(); T* Ydata = GetQuantizedOutputData_();
@ -397,8 +397,8 @@ class MaxPoolDnnLowPOp final : public ConvPoolDNNLowPOpBase<T, MaxPoolFp32Op> {
const T* Xdata = QuantizeInputIfNeeded(this, 0, in_qparams_[0], X_temp); const T* Xdata = QuantizeInputIfNeeded(this, 0, in_qparams_[0], X_temp);
auto& X = InputTensorCPU_(0); auto& X = InputTensorCPU_(0);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, X.dim32(1)); auto* Y = OutputTensorCPU_(0);
auto* Y = OutputTensorCPU_(0, sizes, at::dtype<T>()); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, X.dim32(1));
T* Ydata = GetQuantizedOutputData_(); T* Ydata = GetQuantizedOutputData_();
@ -543,9 +543,9 @@ class MaxPoolDnnLowPOp final : public ConvPoolDNNLowPOpBase<T, MaxPoolFp32Op> {
const T* Xdata = QuantizeInputIfNeeded(this, 0, in_qparams_[0], X_temp); const T* Xdata = QuantizeInputIfNeeded(this, 0, in_qparams_[0], X_temp);
auto& X = InputTensorCPU_(0); auto& X = InputTensorCPU_(0);
auto* Y = OutputTensorCPU_(0);
int channels = X.dim32(X.ndim() - 1); int channels = X.dim32(X.ndim() - 1);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, channels); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, channels);
auto* Y = OutputTensorCPU_(0, sizes, at::dtype<T>());
T* Ydata = GetQuantizedOutputData_(); T* Ydata = GetQuantizedOutputData_();

View File

@ -442,6 +442,7 @@ class Depthwise3x3ConvOp final : public ConvPoolOpBase<CPUContext> {
bool RunOnDeviceWithOrderNCHW() override { bool RunOnDeviceWithOrderNCHW() override {
const Tensor& X = Input(0); const Tensor& X = Input(0);
auto& filter = Input(1); auto& filter = Input(1);
Tensor* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(1); const int N = X.dim32(0), C = X.dim32(1);
CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim()); CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim());
const int M = filter.dim32(0); const int M = filter.dim32(0);
@ -451,8 +452,8 @@ class Depthwise3x3ConvOp final : public ConvPoolOpBase<CPUContext> {
CAFFE_ENFORCE_EQ(C, this->group_); CAFFE_ENFORCE_EQ(C, this->group_);
CAFFE_ENFORCE_EQ(M, this->group_); CAFFE_ENFORCE_EQ(M, this->group_);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, filter.dim32(0)); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
Tensor* Y = Output(0, sizes, at::dtype<float>()); Y->mutable_data<float>();
DepthwiseArgs args; DepthwiseArgs args;
args.batch = X.dim32(0); args.batch = X.dim32(0);

View File

@ -147,8 +147,10 @@ NNPACKConvOp::getActivationType() const {
bool NNPACKConvOp::RunOnDeviceWithOrderNCHW() { bool NNPACKConvOp::RunOnDeviceWithOrderNCHW() {
/* Global variable with a unique ID of the pre-transformed kernel blob */ /* Global variable with a unique ID of the pre-transformed kernel blob */
volatile static uint32_t precomputed_transform_id = 0; volatile static uint32_t precomputed_transform_id = 0;
auto& X = Input(0); auto& X = Input(0);
auto& filter = Input(1); auto& filter = Input(1);
auto* Y = Output(0);
CAFFE_ENFORCE(X.ndim() == 4, "Input dim should be 4"); CAFFE_ENFORCE(X.ndim() == 4, "Input dim should be 4");
const int N = X.dim32(0), C = X.dim32(1), H = X.dim32(2), W = X.dim32(3); const int N = X.dim32(0), C = X.dim32(1), H = X.dim32(2), W = X.dim32(3);
CAFFE_ENFORCE(filter.ndim() == 4, ""); CAFFE_ENFORCE(filter.ndim() == 4, "");
@ -158,8 +160,7 @@ bool NNPACKConvOp::RunOnDeviceWithOrderNCHW() {
CAFFE_ENFORCE(filter.dim32(1) == C / this->group_, ""); CAFFE_ENFORCE(filter.dim32(1) == C / this->group_, "");
CAFFE_ENFORCE(filter.dim32(2) == kernel_h(), ""); CAFFE_ENFORCE(filter.dim32(2) == kernel_h(), "");
CAFFE_ENFORCE(filter.dim32(3) == kernel_w(), ""); CAFFE_ENFORCE(filter.dim32(3) == kernel_w(), "");
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, filter.dim32(0)); ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
Tensor* Y = Output(0, sizes, at::dtype<float>());
const int oH = Y->dim32(2), oW = Y->dim32(3); const int oH = Y->dim32(2), oW = Y->dim32(3);
const float* biasData = NULL; const float* biasData = NULL;