Revert "Tensor construction codemod(raw_mutable_data) (#16373)" (#18680)

Summary:
This reverts commit d73c830e23.

We have observed significant perf drop when training ResNext101 with multiple amd GPUs:

Before:
https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-clang7-rocmdeb-ubuntu16.04-bench/1636/console
2 GPUs ResNext training got 150\~160 imgs/sec
4 GPUs ResNext training got 270\~280 imgs/sec

After:
https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-clang7-rocmdeb-ubuntu16.04-bench/1637/console
Both 2 and 4 GPUs ResNext training drop to 110\~120 imgs/sec

Similar perf drop are seen on ResNet50 training jobs as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18680

Differential Revision: D14702941

Pulled By: bddppq

fbshipit-source-id: 828141805afc23f25c08d4a2eb6d4b99f817c128
This commit is contained in:
Junjie Bai 2019-04-01 14:30:09 -07:00 committed by Facebook Github Bot
parent bdfdf6c2b9
commit 246f5c412e
27 changed files with 128 additions and 115 deletions

View File

@ -50,6 +50,7 @@ template <>
bool BooleanMaskOp<CPUContext>::RunOnDevice() {
auto& data = Input(0);
auto& mask = Input(1);
auto* dataOut = Output(0);
CAFFE_ENFORCE(data.dim() >= 1);
CAFFE_ENFORCE_EQ(mask.dim(), 1);
CAFFE_ENFORCE(data.size(0) == mask.size(0));
@ -65,7 +66,7 @@ bool BooleanMaskOp<CPUContext>::RunOnDevice() {
std::vector<int64_t> outShape;
outShape.push_back(numOutputs);
outShape.insert(outShape.end(), data.sizes().begin() + 1, data.sizes().end());
auto* dataOut = Output(0, outShape, at::dtype(data.dtype()));
dataOut->Resize(outShape);
auto* outPtr = (char*)dataOut->raw_mutable_data(data.dtype());
int64_t* out_vec = nullptr;

View File

@ -31,6 +31,7 @@ class BooleanMaskOp<CUDAContext> final : public Operator<CUDAContext> {
bool RunOnDevice() override {
const auto& src = Input(0);
const auto& mask = Input(1);
auto* dest = Output(0);
CAFFE_ENFORCE(src.dim() >= 1);
CAFFE_ENFORCE_EQ(mask.dim(), 1);
@ -79,8 +80,8 @@ class BooleanMaskOp<CUDAContext> final : public Operator<CUDAContext> {
indices_.Resize(numOfOutput);
std::vector<int64_t> dims = src.sizes().vec();
dims[0] = numOfOutput;
auto* dest = Output(0, dims, at::dtype(src.dtype()));
auto* destData = (uint8_t*)dest->raw_mutable_data(src.dtype());
dest->Resize(dims);
auto* destData = (uint8_t*)dest->raw_mutable_data(src.meta());
const auto* srcData = (uint8_t*)src.raw_data();
if (OutputSize() == 2) {

View File

@ -8,10 +8,11 @@ template <>
bool BooleanUnmaskOp<CPUContext>::RunOnDevice() {
int maskSize = Input(0).numel();
int numMasks = InputSize() / 2;
auto& valueDtype = Input(1).dtype();
auto& valueMeta = Input(1).dtype();
auto* valuesOut = Output(0, maskSize, at::dtype(valueDtype));
auto* valuesOutPtr = (char*)valuesOut->raw_mutable_data(valueDtype);
auto* valuesOut = Output(0);
valuesOut->Resize(maskSize);
auto* valuesOutPtr = (char*)valuesOut->raw_mutable_data(valueMeta);
std::vector<int> nextValueIndices(numMasks, 0);
for (int maskOffset = 0; maskOffset < maskSize; ++maskOffset) {
@ -29,9 +30,9 @@ bool BooleanUnmaskOp<CPUContext>::RunOnDevice() {
if (maskPtr[maskOffset]) {
auto& valueIndex = nextValueIndices[maskIndex];
CAFFE_ENFORCE_LT(valueIndex, values.numel());
auto* src = valuesPtr + (valueIndex++) * valueDtype.itemsize();
auto* dst = valuesOutPtr + maskOffset * valueDtype.itemsize();
std::copy(src, src + valueDtype.itemsize(), dst);
auto* src = valuesPtr + (valueIndex++) * valueMeta.itemsize();
auto* dst = valuesOutPtr + maskOffset * valueMeta.itemsize();
std::copy(src, src + valueMeta.itemsize(), dst);
maskFound = true;
break;
}

View File

@ -54,10 +54,11 @@ class BooleanUnmaskOp<CUDAContext> final : public Operator<CUDAContext> {
bool RunOnDevice() override {
int maskSize = Input(0).numel();
int numMasks = InputSize() / 2;
const auto& dtype = Input(1).dtype();
const auto& meta = Input(1).meta();
auto* out = Output(0, maskSize, at::dtype(dtype));
auto* dest = (char*)out->raw_mutable_data(dtype);
auto* out = Output(0);
out->Resize(maskSize);
auto* dest = (char*)out->raw_mutable_data(meta);
ReinitializeTensor(&hostMasks_, {numMasks}, at::dtype<bool*>().device(CPU));
auto* hostMasksData = hostMasks_.mutable_data<bool*>();
@ -100,7 +101,7 @@ class BooleanUnmaskOp<CUDAContext> final : public Operator<CUDAContext> {
context_.cuda_stream()>>>(
numMasks,
maskSize,
dtype.itemsize(),
meta.itemsize(),
indicesData,
values_.data<char*>(),
valueSizesData,

View File

@ -177,11 +177,12 @@ bool SplitOp<Context>::RunOnDevice() {
}
size_t input_offset = 0;
for (int i = 0; i < OutputSize(); ++i) {
auto* output = Output(i);
auto axis_dim = add_axis_ ? 1 : axis_data[i];
if (!add_axis_) {
output_dims[canonical_axis] = axis_data[i];
}
auto* output = Output(i, output_dims, at::dtype(input.dtype()));
output->Resize(output_dims);
math::CopyMatrix<Context>(
input.itemsize(),
before,
@ -222,11 +223,12 @@ bool SplitByLengthsOp<Context>::RunOnDevice() {
int after = input.size_from_dim(canonical_axis + 1);
size_t input_offset = 0;
for (int i = 0; i < OutputSize(); ++i) {
auto* output = Output(i);
const auto* axis_offset = axis_data + length_length / OutputSize() * i;
auto axis_dim = std::accumulate(
axis_offset, axis_offset + length_length / OutputSize(), 0);
output_dims[canonical_axis] = axis_dim;
auto* output = Output(i, output_dims, at::dtype(input.dtype()));
output->Resize(output_dims);
math::CopyMatrix<Context>(
input.itemsize(),
before,
@ -244,6 +246,8 @@ bool SplitByLengthsOp<Context>::RunOnDevice() {
template <class Context>
bool ConcatOp<Context>::RunOnDevice() {
auto* output = Output(0);
// We can override default options(Context::GetDeviceType())
// by explictly passing in device type we want
Tensor* split = Output(
@ -310,7 +314,7 @@ bool ConcatOp<Context>::RunOnDevice() {
} else {
output_dims[canonical_axis] = output_channels;
}
auto* output = Output(0, output_dims, at::dtype(input_zero.dtype()));
output->Resize(output_dims);
size_t output_offset = 0;
for (int i = 0; i < InputSize(); ++i) {
auto& input = Input(i);

View File

@ -23,8 +23,9 @@ bool ConditionalOp<CPUContext>::RunOnDevice() {
CAFFE_ENFORCE(innerSize * dataF.dtype().itemsize() == innerSizeBytes);
// initialize output shape
auto* dataOut = Output(0);
const auto* condPtr = condition.template data<bool>();
auto* dataOut = Output(0, dataT.sizes(), at::dtype(dataT.dtype()));
dataOut->ResizeLike(dataT);
auto* outPtr = (char*)dataOut->raw_mutable_data(dataT.dtype());
// perform conditional op along first dimension

View File

@ -13,14 +13,14 @@ class CopyOnDeviceLikeOp<CUDAContext, CUDAContext, CUDAContext>
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = OperatorBase::OutputTensor(
0, input.sizes(), at::dtype(input.dtype()).device(CUDA));
auto* output = OperatorBase::Output<Tensor>(0, CUDA);
CUDAContext context(GetGPUIDForPointer(Input(1).raw_data()));
output->ResizeLike(input);
context.template CopyItems<CUDAContext, CUDAContext>(
input.dtype(),
input.meta(),
input.numel(),
input.raw_data(),
output->raw_mutable_data(input.dtype()));
output->raw_mutable_data(input.meta()));
return true;
}
};

View File

@ -14,10 +14,9 @@ class CopyOp : public Operator<Context> {
bool RunOnDevice() override {
auto& input = this->template Input<Tensor>(0, SrcContext::GetDeviceType());
auto* output = this->OutputTensor(
0,
input.sizes(),
at::dtype(input.dtype()).device(DstContext::GetDeviceType()));
auto* output =
this->template Output<Tensor>(0, DstContext::GetDeviceType());
output->ResizeLike(input);
this->context_.template CopyItems<SrcContext, DstContext>(
input.dtype(),
input.numel(),

View File

@ -94,16 +94,13 @@ class ViterbiPathOp : public Operator<CPUContext> {
auto block_size = predictions.numel() / predictions.size(0);
auto block_bytesize =
predictions.size_from_dim(1) * predictions.dtype().itemsize();
Tensor backpointers =
caffe2::empty(predictions.sizes(), at::dtype<int32_t>().device(CPU));
Tensor backpointers(CPU);
backpointers.ResizeLike(predictions);
Tensor trellis = caffe2::empty(
std::vector<int64_t>{block_size},
at::dtype(predictions.dtype()).device(CPU));
Tensor dpMat =
caffe2::empty(transitions.sizes(), at::dtype<float>().device(CPU));
Tensor dpMax = caffe2::empty(
std::vector<int64_t>{block_size}, at::dtype<float>().device(CPU));
Tensor trellis(std::vector<int64_t>{block_size}, CPU);
Tensor dpMat(CPU);
dpMat.ResizeLike(transitions);
Tensor dpMax(std::vector<int64_t>{block_size}, CPU);
GatherRow(predictions, 0, block_size, block_bytesize, &trellis);
for (auto i = 1; i < seqLen; i++) {
AddColToMat(transitions, trellis, &dpMat);
@ -123,10 +120,8 @@ class ViterbiPathOp : public Operator<CPUContext> {
&context_);
}
Tensor tMax =
caffe2::empty(std::vector<int64_t>{1}, at::dtype<float>().device(CPU));
Tensor tArgMax = caffe2::empty(
std::vector<int64_t>{1}, at::dtype<int32_t>().device(CPU));
Tensor tMax(std::vector<int64_t>{1}, CPU);
Tensor tArgMax(std::vector<int64_t>{1}, CPU);
ColwiseMaxAndArg(
trellis.template data<float>(),
1,
@ -136,9 +131,7 @@ class ViterbiPathOp : public Operator<CPUContext> {
std::vector<int32_t> viterbiVec;
viterbiVec.push_back(tArgMax.template data<int32_t>()[0]);
Tensor bpEntry = caffe2::empty(
std::vector<int64_t>{block_size},
at::dtype(backpointers.dtype()).device(CPU));
Tensor bpEntry(std::vector<int64_t>{block_size}, CPU);
block_bytesize =
backpointers.size_from_dim(1) * backpointers.dtype().itemsize();
for (auto i = seqLen - 1; i > 0; i--) {
@ -159,14 +152,14 @@ class SwapBestPathOp : public Operator<CPUContext> {
: Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
auto& data = Input(0);
auto& newBestIndicies = Input(1);
auto& newBestIdicies = Input(1);
CAFFE_ENFORCE(
data.dim() == 2 && newBestIndicies.dim() == 1,
data.dim() == 2 && newBestIdicies.dim() == 1,
"predictions should be a 2D matrix and bestPath should be 1D vector");
CAFFE_ENFORCE(
data.size(0) == newBestIndicies.size(0),
data.size(0) == newBestIdicies.size(0),
"predictions and bestPath dimensions not matching");
auto* updatedData = Output(0, data.sizes(), at::dtype<float>());
@ -174,10 +167,10 @@ class SwapBestPathOp : public Operator<CPUContext> {
context_.CopyItemsSameDevice(
data.dtype(), data.numel(), data.template data<float>(), outData);
Tensor bestScores =
caffe2::empty(newBestIndicies.sizes(), at::dtype<float>().device(CPU));
Tensor oldBestIndices = caffe2::empty(
newBestIndicies.sizes(), at::dtype<int32_t>().device(CPU));
Tensor bestScores(CPU);
bestScores.ResizeLike(newBestIdicies);
Tensor oldBestIndices(CPU);
oldBestIndices.ResizeLike(newBestIdicies);
ColwiseMaxAndArg(
data.template data<float>(),
@ -189,7 +182,7 @@ class SwapBestPathOp : public Operator<CPUContext> {
auto block_size = data.numel() / data.size(0);
const int32_t* oldBestIdx = oldBestIndices.template data<int32_t>();
const int32_t* newIdx = newBestIndicies.template data<int32_t>();
const int32_t* newIdx = newBestIdicies.template data<int32_t>();
for (auto i = 0; i < data.dim32(0); i++) {
std::swap(

View File

@ -319,11 +319,7 @@ class PackRecordsOp : public Operator<CPUContext> {
Output(0)->Resize(walker.size());
// Output(0)->raw_mutable_data(TypeMeta::Make<SharedTensorVectorPtr>()));
auto* dst = Output(
0,
{static_cast<int64_t>(walker.size())},
at::dtype<SharedTensorVectorPtr>())
->template mutable_data<SharedTensorVectorPtr>();
auto* dst = Output(0)->template mutable_data<SharedTensorVectorPtr>();
for (int batchId = 0; batchId < walker.size(); ++batchId) {
dst[batchId] = std::make_shared<std::vector<TensorCPU>>();
@ -399,8 +395,8 @@ class UnPackRecordsOp : public Operator<CPUContext> {
// Resize to the final output size
std::vector<void*> destinations(numTensors);
for (int i = 0; i < numTensors; ++i) {
auto* output = Output(i, {outputDims[i]}, at::dtype(*metas[i]));
destinations[i] = output->raw_mutable_data(*metas[i]);
Output(i)->Resize(outputDims[i]);
destinations[i] = Output(i)->raw_mutable_data(*metas[i]);
}
for (int i = 0; i < numRows; ++i) {
@ -521,9 +517,10 @@ class ReadNextBatchOp : public Operator<CPUContext> {
auto innerSize = in.size_from_dim(1);
outDim = in.sizes().vec();
outDim[0] = size;
auto* out = Output(i);
out->Resize(outDim);
void* src =
(char*)in.raw_data() + offset * innerSize * in.dtype().itemsize();
auto* out = Output(i, {outDim}, at::dtype(in.dtype()));
void* dst = out->raw_mutable_data(in.dtype()); // create the tensor
if (out->numel() == 0) {
continue;
@ -728,7 +725,8 @@ class ReadRandomBatchOp : public Operator<CPUContext> {
idx++;
}
idx = idxbegin; // reSet
auto* out = Output(i, {outDim}, at::dtype(in.dtype()));
auto* out = Output(i);
out->Resize(outDim);
if (out->numel() == 0) {
continue;
}
@ -775,13 +773,13 @@ class AppendOp final : public Operator<Context> {
bool RunOnDevice() override {
auto& a = Input(0);
auto& b = Input(1);
auto* c = Output(0, a.sizes(), at::dtype(a.dtype()));
auto* c = Output(0);
CAFFE_ENFORCE(b.dim() >= 1);
if (a.numel() == 0 && a.size(0) == 0) {
c->CopyFrom(b);
return true;
}
CAFFE_ENFORCE(IsInputOutputAlias(0, 0), "First argument must be in-place.");
CAFFE_ENFORCE(&a == c, "First argument must be in-place.");
CAFFE_ENFORCE(c->dim() == b.dim());
CAFFE_ENFORCE(b.dim() == c->dim());
CAFFE_ENFORCE(a.dtype() == b.dtype());
@ -815,14 +813,13 @@ class AtomicAppendOp final : public Operator<Context> {
for (int i = 0; i < numFields; ++i) {
auto& a = Input(1 + i);
auto& b = Input(1 + i + numFields);
auto* c = Output(i, a.sizes(), at::dtype(a.dtype()));
auto* c = Output(i);
CAFFE_ENFORCE(b.dim() >= 1);
if (a.numel() == 0) {
continue;
}
CAFFE_ENFORCE(
IsInputOutputAlias(1 + i, i),
"Appended-to arguments must be in-place.");
(void*)&a == (void*)c, "Appended-to arguments must be in-place.");
CAFFE_ENFORCE(c->dim() == b.dim());
CAFFE_ENFORCE(b.dim() == c->dim());
CAFFE_ENFORCE(a.dtype() == b.dtype());
@ -835,8 +832,7 @@ class AtomicAppendOp final : public Operator<Context> {
for (int i = 0; i < numFields; ++i) {
auto& a = Input(1 + i);
auto& b = Input(1 + i + numFields);
// Can we create Tensor with numel() == 0?
auto* c = Output(i, a.sizes(), at::dtype(a.dtype()));
auto* c = Output(i);
if (a.numel() == 0 && a.size(0) == 0) {
c->CopyFrom(b);
continue;
@ -896,6 +892,7 @@ class ConcatTensorVectorOp final : public Operator<Context> {
const TensorVectorPtr& tensorVector =
OperatorBase::Input<TensorVectorPtr>(TENSOR_VECTOR);
auto* tensor = Output(TENSOR);
CAFFE_ENFORCE(!tensorVector->empty());
vector<int64_t> outputDims(tensorVector->at(0).sizes().vec());
@ -909,8 +906,7 @@ class ConcatTensorVectorOp final : public Operator<Context> {
outputDims[0] += tensorVector->at(i).sizes()[0];
}
auto* tensor =
Output(TENSOR, outputDims, at::dtype(tensorVector->at(0).dtype()));
tensor->Resize(outputDims);
int64_t offset = 0;
auto* dst = (char*)tensor->raw_mutable_data(tensorVector->at(0).dtype());
@ -1025,8 +1021,6 @@ class TrimDatasetOp : public Operator<CPUContext> {
// trim each column to the offset
for (int col = 0; col < walker.fields().size(); ++col) {
auto newOuterSize = walker.fields().at(col).offset();
// TODO: Remove call to Output(col) since it
// returns partially initialized Tensor
Output(col)->ShrinkTo(newOuterSize);
}
return true;

View File

@ -33,10 +33,9 @@ class EnsureCPUOutputOp : public Operator<Context> {
template <class InputContext>
bool CopyWithContext() {
// Output is always on CPU
auto* output = this->template Output<Tensor>(0, CPU);
auto& input = this->template Input<Tensor>(0, InputContext::GetDeviceType());
// TODO: is it possible to use OutputTensorCopyFrom?
auto* output = this->OutputTensor(
0, input.sizes(), at::dtype(input.dtype()).device(CPU));
output->ResizeLike(input);
context_.CopyItemsToCPU(
input.dtype(),
input.numel(),

View File

@ -17,12 +17,10 @@ class FlattenOp : public Operator<Context> {
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
CAFFE_ENFORCE_GE(
input.dim(), axis_, "The rank of the tensor must be >= axis.");
auto* output = Output(
0,
{input.size_to_dim(axis_), input.size_from_dim(axis_)},
at::dtype(input.dtype()));
output->Resize(input.size_to_dim(axis_), input.size_from_dim(axis_));
context_.CopyItemsSameDevice(
input.dtype(),
input.numel(),

View File

@ -66,8 +66,9 @@ class GatherRangesToDenseOp final : public Operator<Context> {
vector<int64_t> outputDims{batchSize, 0};
vector<char*> outputRawData;
for (int i = 0; i < OutputSize(); ++i) {
auto* output = Output(i);
outputDims[1] = lengths_[i];
auto* output = Output(i, outputDims, at::dtype(data.dtype()));
output->Resize(outputDims);
char* ptr = static_cast<char*>(output->raw_mutable_data(data.dtype()));
memset(ptr, 0, output->nbytes());
outputRawData.push_back(ptr);

View File

@ -6,6 +6,7 @@ template <>
bool LengthsTileOp<CPUContext>::RunOnDevice() {
auto& data = Input(DATA);
auto& lengths = Input(LENGTHS);
auto* output = Output(0);
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTHS must be 1-D");
CAFFE_ENFORCE_GE(data.dim(), 1, "DATA should be at least 1-D");
@ -25,7 +26,7 @@ bool LengthsTileOp<CPUContext>::RunOnDevice() {
auto shape = data.sizes().vec();
shape[0] = total_length;
auto* output = Output(0, shape, at::dtype(data.dtype()));
output->Resize(shape);
auto block_bytesize = data.size_from_dim(1) * data.dtype().itemsize();
auto src = static_cast<const char*>(data.raw_data());

View File

@ -116,6 +116,7 @@ template <typename T, typename Data_T>
bool UnpackSegmentsOp<CPUContext>::DoRunWithType2() {
const auto& data = Input(DATA);
const auto& lengths = Input(LENGTHS);
auto* output = Output(0);
CAFFE_ENFORCE_GE(data.dim(), 2, "DATA should be at least 2-D");
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
@ -134,7 +135,7 @@ bool UnpackSegmentsOp<CPUContext>::DoRunWithType2() {
shape[0], lengths.size(0), "LENGTH should match DATA in dimension 0");
shape.erase(shape.begin());
shape[0] = total_l;
auto* output = Output(0, shape, at::dtype(data.dtype()));
output->Resize(shape);
// create output tensor
auto* out = static_cast<char*>(output->raw_mutable_data(data.dtype()));
if (!(data.size(0) && data.size(1))) {

View File

@ -179,6 +179,11 @@ bool PackSegmentsOp<CUDAContext>::DoRunWithType2() {
int64_t num_seq = lengths.dim(0);
const Data_T* data_ptr = data.data<Data_T>();
const T* lengths_ptr = lengths.data<T>();
auto* out = Output(0);
Tensor* presence_mask = nullptr;
if (return_presence_mask_) {
presence_mask = Output(1);
}
CAFFE_ENFORCE_GE(data.dim(), 1, "DATA should be at least 1-D");
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
@ -209,7 +214,7 @@ bool PackSegmentsOp<CUDAContext>::DoRunWithType2() {
bool* presence_mask_data = nullptr;
if (return_presence_mask_) {
std::vector<int64_t> presence_shape{lengths.numel(), max_length};
auto* presence_mask = Output(1, presence_shape, at::dtype<bool>());
presence_mask->Resize(presence_shape);
presence_mask_data = presence_mask->template mutable_data<bool>();
}
@ -217,8 +222,8 @@ bool PackSegmentsOp<CUDAContext>::DoRunWithType2() {
auto shape = data.sizes().vec(); // Shape of out is batch_size x max_len x ...
shape[0] = max_length;
shape.insert(shape.begin(), lengths.numel());
auto* out = Output(0, shape, at::dtype(data.dtype()));
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.dtype()));
out->Resize(shape);
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.meta()));
// Return empty out (with the proper shape) if first dim is 0.
if (!data.dim(0)) {
@ -260,6 +265,7 @@ bool UnpackSegmentsOp<CUDAContext>::DoRunWithType2() {
int64_t num_seq = lengths.dim(0);
const Data_T* data_ptr = data.data<Data_T>();
const T* lengths_ptr = lengths.data<T>();
auto* out = Output(0);
CAFFE_ENFORCE_GE(data.dim(), 1, "DATA should be at least 1-D");
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
@ -309,8 +315,8 @@ bool UnpackSegmentsOp<CUDAContext>::DoRunWithType2() {
shape[0], lengths.dim(0), "LENGTH should match DATA in dimension 0");
shape.erase(shape.begin());
shape[0] = num_cell;
auto* out = Output(0, shape, at::dtype(data.dtype()));
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.dtype()));
out->Resize(shape);
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.meta()));
// Return empty out (with the proper shape) if any of the dimensions is 0.
if (data.dim(0) == 0 || data.dim(1) == 0) {

View File

@ -60,7 +60,8 @@ class GatherByKeyOp : public Operator<CPUContext> {
}
CAFFE_ENFORCE_EQ(keysTensor.numel(), totalSize);
auto* outTensor = Output(0, outShape, at::dtype(meta));
auto* outTensor = Output(0);
outTensor->Resize(outShape);
auto* outData = static_cast<char*>(outTensor->raw_mutable_data(meta));
const auto blockSize = outTensor->size_from_dim(1);
@ -163,8 +164,9 @@ class PartitionOpBase : public Operator<CPUContext> {
input.sizes().begin() + main_input.dim() - 1, input.sizes().end());
for (int j = 0; j < partitions; ++j) {
int out_idx = i + j * inputSize;
auto output = Output(out_idx);
shape[0] = counts_[j];
auto output = Output(out_idx, shape, at::dtype(input.dtype()));
output->Resize(shape);
out_datas_[out_idx] = output->raw_mutable_data(input.dtype());
}
}
@ -254,12 +256,13 @@ class LengthsPartitionOp : public PartitionOpBase {
// Specialization when partitions == 1 which just becomes a copy.
for (int i = 0; i < InputSize(); ++i) {
auto& input = Input(i);
auto* output = Output(i, input.sizes(), at::dtype(input.dtype()));
auto& output = *Output(i);
output.ResizeLike(input);
context_.CopyItemsSameDevice(
input.dtype(),
input.numel(),
input.raw_data(),
output->raw_mutable_data(input.dtype()));
output.raw_mutable_data(input.dtype()));
}
return true;
}
@ -277,8 +280,9 @@ class LengthsPartitionOp : public PartitionOpBase {
const int32_t* lengths_data = length_input.template data<int32_t>();
out_length_.resize(partitions);
for (int i = 0; i < partitions; ++i) {
auto* output = Output(i * InputSize(), elements, at::dtype<int32_t>());
out_length_[i] = output->template mutable_data<int32_t>();
auto& output = *Output(i * InputSize());
output.Resize(elements);
out_length_[i] = output.template mutable_data<int32_t>();
}
int total_length = 0;

View File

@ -23,6 +23,7 @@ class PrependDimOp : public Operator<Context> {
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
CAFFE_ENFORCE(input.dim() > 0, "Input must be at least 1D.");
CAFFE_ENFORCE(
@ -36,9 +37,9 @@ class PrependDimOp : public Operator<Context> {
for (int i = 1; i < input.sizes().size(); ++i) {
actual_new_shape[i + 1] = input.size(i);
}
auto* output = Output(0, actual_new_shape, at::dtype(input.dtype()));
output->Resize(actual_new_shape);
if (!IsInputOutputAlias(0, 0)) {
if (output != &input) {
// If we are not doing in-place computation, a copy is needed.
context_.CopyItemsSameDevice(
input.dtype(),
@ -63,6 +64,7 @@ class MergeDimOp : public Operator<Context> {
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
CAFFE_ENFORCE(input.dim() > 1, "Input must be at least 2D.");
@ -71,9 +73,9 @@ class MergeDimOp : public Operator<Context> {
for (int i = 1; i < input.sizes().size() - 1; ++i) {
actual_new_shape[i] = input.size(i + 1);
}
auto* output = Output(0, actual_new_shape, at::dtype(input.dtype()));
output->Resize(actual_new_shape);
if (!IsInputOutputAlias(0, 0)) {
if (output != &input) {
// If we are not doing in-place computation, a copy is needed.
context_.CopyItemsSameDevice(
input.dtype(),

View File

@ -52,9 +52,10 @@ class RemoveDataBlocksOp final : public Operator<Context> {
ind_vec.erase(std::unique(ind_vec.begin(), ind_vec.end()), ind_vec.end());
indices_size = ind_vec.size();
auto* output = Output(0);
auto shape = data.sizes().vec();
shape[0] -= indices_size;
auto* output = Output(0, shape, at::dtype(data.dtype()));
output->Resize(shape);
char* out_ptr = (char*)output->raw_mutable_data(data.dtype());
ind_vec.insert(ind_vec.begin(), -1);

View File

@ -23,7 +23,6 @@ class ReservoirSamplingOp final : public Operator<Context> {
auto& mutex = OperatorBase::Input<std::unique_ptr<std::mutex>>(MUTEX);
std::lock_guard<std::mutex> guard(*mutex);
// TODO: separate diff for this
auto* output = Output(RESERVOIR);
const auto& input = Input(DATA);

View File

@ -30,8 +30,7 @@ class ReshapeOp : public Operator<Context> {
template <typename T>
bool DoRunWithType() {
DoRunWithTypeImpl<T>(
Input(0), Output(0, Input(0).sizes(), Input(0).dtype()));
DoRunWithTypeImpl<T>(Input(0), Output(0));
return true;
}
@ -124,7 +123,7 @@ class ReshapeOp : public Operator<Context> {
}
output->Resize(actual_new_shape);
if (!IsInputOutputAlias(0, 0)) {
if (output != &input) {
// If we are not doing in-place computation, a copy is needed.
context_.CopyItemsSameDevice(
input.dtype(),

View File

@ -192,15 +192,16 @@ bool PadEmptySamplesOp<CPUContext>::RunOnDevice() {
features.size(0) == sumLen, "FEATURE and LENGTH should be consistent");
const auto block_size = features.size_from_dim(1);
auto* out_features = Output(1 + k);
auto outDim = features.sizes().vec();
outDim.at(0) += needPadding;
auto* out_features = Output(1 + k, outDim, at::dtype(features.dtype()));
out_features->Resize(outDim);
auto dst =
static_cast<char*>(out_features->raw_mutable_data(features.dtype()));
auto src_base = static_cast<const char*>(features.raw_data());
// copy data and add padding index as zero
Tensor zero =
caffe2::empty({block_size}, at::dtype(features.dtype()).device(CPU));
Tensor zero{CPU};
zero.Resize(block_size);
auto zeroPtr = static_cast<char*>(zero.raw_mutable_data(features.dtype()));
memset(zeroPtr, 0, zero.nbytes());
int start_dest = 0;

View File

@ -110,8 +110,8 @@ class TextFileReaderReadOp : public Operator<CPUContext> {
// it.
std::vector<char*> datas(numFields);
for (int i = 0; i < numFields; ++i) {
auto* output = Output(i, batchSize_, at::dtype(instance->fieldMetas[i]));
datas[i] = (char*)output->raw_mutable_data(instance->fieldMetas[i]);
Output(i)->Resize(batchSize_);
datas[i] = (char*)Output(i)->raw_mutable_data(instance->fieldMetas[i]);
}
int rowsRead = 0;

View File

@ -74,12 +74,13 @@ class TileOp final : public Operator<Context> {
}
const auto& X = Input(0);
auto* Y = Output(0);
const int axis = X.canonical_axis_index(axis_);
// reshape output to be input tiled along the axis
std::vector<std::int64_t> Y_dims = X.sizes().vec();
Y_dims[axis] *= tiles_;
auto* Y = Output(0, Y_dims, at::dtype<T>());
Y->Resize(Y_dims);
// size up to (and not including) axis
const int outer_size = X.size_to_dim(axis);
@ -178,13 +179,14 @@ class TileGradientOp final : public Operator<Context> {
}
const auto& dY = Input(0);
auto* dX = Output(0);
const int axis = dY.canonical_axis_index(axis_);
// reshape output to be input "untiled" along the axis
std::vector<std::int64_t> X_dims = dY.sizes().vec();
CAFFE_ENFORCE_EQ(X_dims[axis] % tiles_, 0);
X_dims[axis] /= tiles_;
auto* dX = Output(0, X_dims, at::dtype<T>());
dX->Resize(X_dims);
// size up to (and not including) axis
const int outer_size = dX->size_to_dim(axis);

View File

@ -235,9 +235,10 @@ class FlattenToVecOp : public Operator<Context> {
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
CAFFE_ENFORCE_GE(
input.dim(), 1, "The rank of the tensor must be >= 1.");
auto* output = Output(0, {input.numel()}, at::dtype(input.dtype()));
output->Resize(input.numel());
context_.CopyItemsSameDevice(
input.dtype(),
@ -258,8 +259,9 @@ class ResizeLikeOp : public Operator<Context> {
bool RunOnDevice() override {
auto& input0 = Input(0);
auto& input1 = Input(1);
auto* output = Output(0);
CAFFE_ENFORCE_EQ(input0.numel(), input1.numel());
auto* output = Output(0, input1.sizes(), at::dtype(input0.dtype()));
output->ResizeLike(Input(1));
context_.CopyItemsSameDevice(
input0.dtype(),
input0.numel(),
@ -1048,6 +1050,8 @@ class GatherRangesOp : public Operator<Context> {
bool DoRunWithType() {
auto& data = Input(DATA);
auto& ranges = Input(RANGES);
auto* outputData = Output(0);
auto* outputLengths = Output(1);
auto batchSize = ranges.size(0);
CAFFE_ENFORCE(data.dim() == 1, "Data has to be 1-D");
@ -1059,7 +1063,7 @@ class GatherRangesOp : public Operator<Context> {
auto* rawData = static_cast<const char*>(data.raw_data());
auto* rangesData = ranges.template data<Index>();
auto* outputLengths = Output(1, {batchSize}, at::dtype<int32_t>());
outputLengths->Resize(batchSize);
auto* outputLengthsPtr = outputLengths->template mutable_data<int32_t>();
size_t start = 0;
size_t blockSize = ranges.size_from_dim(1);
@ -1070,8 +1074,7 @@ class GatherRangesOp : public Operator<Context> {
}
size_t outputSize = accumulate(rangesData, 0, ranges.numel());
auto* outputData =
Output(0, {static_cast<int64_t>(outputSize)}, at::dtype(data.dtype()));
outputData->Resize(outputSize);
auto outputRawData =
static_cast<char*>(outputData->raw_mutable_data(data.dtype()));
@ -1127,6 +1130,7 @@ class LengthsGatherOp : public Operator<Context> {
auto& items = Input(ITEMS);
auto& lengths = Input(LENGTHS);
auto& indices = Input(INDICES);
auto* output = Output(0);
CAFFE_ENFORCE_GE(items.dim(), 1, "ITEMS should be at least 1-D");
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTHS should be 1-D");
@ -1143,7 +1147,7 @@ class LengthsGatherOp : public Operator<Context> {
}
auto shape = items.sizes().vec();
shape[0] = total_length;
auto* output = Output(0, {shape}, at::dtype(items.dtype()));
output->Resize(shape);
offsets_.clear();
int64_t running_offset = 0;

View File

@ -83,7 +83,8 @@ bool FullyConnectedDNNLowPOp<T>::RunOnDevice() {
}
auto* Y_ref = fp32_op->Output(0);
auto* Y = OutputTensorCPU_(0, Y_ref->sizes(), at::dtype(Y_ref->dtype()));
auto* Y = OutputTensorCPU_(0);
Y->ResizeLike(*Y_ref);
fp32_op->context_.CopyItemsSameDevice(
Y_ref->dtype(),
Y_ref->size(),

View File

@ -84,8 +84,7 @@ std::vector<std::vector<TensorCPU>> split(
CAFFE_ENFORCE_EQ(input.sizes().at(0), outputSize);
for (int i = 0; i < outputSize; ++i) {
outputs[i].push_back(
caffe2::empty(outputDims, at::dtype(input.dtype()).device(CPU)));
outputs[i].push_back(Tensor(outputDims, CPU));
context.CopyItemsToCPU(
input.dtype(),
innerSize,