mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[Test] Add simple MPS op benchmarks (#149914)
Lots of benchmark tests has been posted in PRs, but they might get lost over time So let's create a benchmark and populate it with results (preferably from the run on CI machine) Pull Request resolved: https://github.com/pytorch/pytorch/pull/149914 Approved by: https://github.com/dcci, https://github.com/cyyever
This commit is contained in:
parent
86dcdf9c8b
commit
23183fef7e
8
.github/workflows/_mac-test-mps.yml
vendored
8
.github/workflows/_mac-test-mps.yml
vendored
|
|
@ -160,6 +160,14 @@ jobs:
|
||||||
run: |
|
run: |
|
||||||
cat test/**/*_toprint.log || true
|
cat test/**/*_toprint.log || true
|
||||||
|
|
||||||
|
- name: Run OP benchmark
|
||||||
|
run: |
|
||||||
|
if [[ -n "$CONDA_ENV" ]]; then
|
||||||
|
# Use binaries under conda environment
|
||||||
|
export PATH="$CONDA_ENV/bin":$PATH
|
||||||
|
fi
|
||||||
|
${CONDA_RUN} python3 test/bench_mps_ops.py
|
||||||
|
|
||||||
- name: Upload test artifacts
|
- name: Upload test artifacts
|
||||||
uses: ./.github/actions/upload-test-artifacts
|
uses: ./.github/actions/upload-test-artifacts
|
||||||
if: always() && steps.test.conclusion && steps.test.conclusion != 'skipped'
|
if: always() && steps.test.conclusion && steps.test.conclusion != 'skipped'
|
||||||
|
|
|
||||||
92
test/bench_mps_ops.py
Normal file
92
test/bench_mps_ops.py
Normal file
|
|
@ -0,0 +1,92 @@
|
||||||
|
# Owner(s): ["module: mps"]
|
||||||
|
# Collection of op level benchmarks for MPS
|
||||||
|
# Useful as reference tool when migrating ops from MPS to Metal
|
||||||
|
import itertools
|
||||||
|
import timeit
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.utils.benchmark import Compare, Measurement, Timer
|
||||||
|
|
||||||
|
|
||||||
|
def bench_unary_op(func, x, label) -> Measurement:
|
||||||
|
sync_cmd = "torch.mps.synchronize()" if "mps" in str(x.device) else ""
|
||||||
|
t = Timer(
|
||||||
|
stmt=f"f(x);{sync_cmd}",
|
||||||
|
globals={"f": func, "x": x},
|
||||||
|
language="python",
|
||||||
|
timer=timeit.default_timer,
|
||||||
|
sub_label=f"{func.__name__} ({str(x.dtype)})",
|
||||||
|
description=label,
|
||||||
|
env=torch.__version__,
|
||||||
|
)
|
||||||
|
return t.blocked_autorange()
|
||||||
|
|
||||||
|
|
||||||
|
def bench_binary_op(func, x, y, label) -> Measurement:
|
||||||
|
sync_cmd = "torch.mps.synchronize()" if "mps" in str(x.device) else ""
|
||||||
|
t = Timer(
|
||||||
|
stmt=f"f(x, y);{sync_cmd}",
|
||||||
|
globals={"f": func, "x": x, "y": y},
|
||||||
|
language="python",
|
||||||
|
timer=timeit.default_timer,
|
||||||
|
sub_label=f"{func.__name__} ({str(x.dtype)}, {str(y.dtype)})",
|
||||||
|
description=label,
|
||||||
|
env=torch.__version__,
|
||||||
|
)
|
||||||
|
return t.blocked_autorange()
|
||||||
|
|
||||||
|
|
||||||
|
def bench_unary(
|
||||||
|
unary_func, device: str = "mps", dtype: torch.dtype = torch.float32
|
||||||
|
) -> list[Measurement]:
|
||||||
|
x = torch.testing.make_tensor(1024, 1024, device=device, dtype=dtype)
|
||||||
|
x_s = torch.testing.make_tensor(1024, 2048, device=device, dtype=dtype)[::, ::2]
|
||||||
|
rc = []
|
||||||
|
rc.append(bench_unary_op(unary_func, x, "dense"))
|
||||||
|
rc.append(bench_unary_op(unary_func, x.t(), "transposed"))
|
||||||
|
rc.append(bench_unary_op(unary_func, x_s, "strided"))
|
||||||
|
rc.append(bench_unary_op(unary_func, x_s.t(), "strided + transposed"))
|
||||||
|
return rc
|
||||||
|
|
||||||
|
|
||||||
|
def bench_binary(
|
||||||
|
binary_func,
|
||||||
|
device: str = "mps",
|
||||||
|
dt_a: torch.dtype = torch.float32,
|
||||||
|
dt_b: Optional[torch.dtype] = None,
|
||||||
|
) -> list[Measurement]:
|
||||||
|
dt_b = dt_b if dt_b is not None else dt_a
|
||||||
|
x = torch.testing.make_tensor(1024, 1024, device=device, dtype=dt_a)
|
||||||
|
y = torch.testing.make_tensor(1024, 1024, device=device, dtype=dt_b)
|
||||||
|
s = torch.testing.make_tensor((), device=device, dtype=dt_b)
|
||||||
|
rc = []
|
||||||
|
rc.append(bench_binary_op(binary_func, x, y, "dense-dense"))
|
||||||
|
rc.append(bench_binary_op(binary_func, x.t(), y.t(), "transp-transp"))
|
||||||
|
rc.append(bench_binary_op(binary_func, x, y.t(), "dense-transp"))
|
||||||
|
rc.append(bench_binary_op(binary_func, x.t(), y, "transp-dense"))
|
||||||
|
rc.append(bench_binary_op(binary_func, x, s, "dense-scalar"))
|
||||||
|
rc.append(bench_binary_op(binary_func, x, y[0], "dense-bcast"))
|
||||||
|
return rc
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
dtypes = [torch.float16, torch.float32]
|
||||||
|
# Profile unary ops
|
||||||
|
rc = []
|
||||||
|
for op, dtype in itertools.product([torch.sqrt, torch.sin], dtypes):
|
||||||
|
rc.extend(bench_unary(op, dtype=dtype))
|
||||||
|
Compare(rc).print()
|
||||||
|
|
||||||
|
# Profile binary ops
|
||||||
|
rc = []
|
||||||
|
ops = [torch.fmax, torch.add]
|
||||||
|
for op, dtype in itertools.product(ops, dtypes):
|
||||||
|
rc.extend(bench_binary(op, dt_a=dtype))
|
||||||
|
for op in ops:
|
||||||
|
rc.extend(bench_binary(op, dt_b=torch.float16))
|
||||||
|
Compare(rc).print()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
Loading…
Reference in New Issue
Block a user