mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[ROCm] Enable group gemm through CK (#166334)
Fixes #161366 All the 4 types of dimension matrix are supported. 2d-2d, 2d-3d, 3d-3d, 3d-2d. The corresponding test cases in test_matmul_cuda are working for both forward and backward pass. The CK path is enabled for gfx942, gfx950. ToDo: Need to enable support on gfx90a since the ck kernel used in this commit produces gpu error, might require a different CK kernel config, based on the profiler result on gfx90a. Pull Request resolved: https://github.com/pytorch/pytorch/pull/166334 Approved by: https://github.com/jeffdaily, https://github.com/pruthvistony
This commit is contained in:
parent
c2e3cc7aed
commit
1fa520ea65
|
|
@ -22,6 +22,9 @@
|
|||
#include <ATen/native/cuda/RowwiseScaledMM.h>
|
||||
#include <ATen/native/cuda/ScaledGroupMM.h>
|
||||
#include <ATen/native/cuda/GroupMM.h>
|
||||
#ifdef USE_ROCM
|
||||
#include <ATen/native/hip/ck_group_gemm.h>
|
||||
#endif
|
||||
#include <ATen/ceil_div.h>
|
||||
|
||||
#ifdef USE_FBGEMM_GENAI
|
||||
|
|
@ -636,12 +639,19 @@ std::optional<c10::ScalarType> out_dtype) {
|
|||
// _scaled_mm_allowed_device is used here within _grouped_mm_cuda which seems incorrect since scale is not used.
|
||||
// the _grouped_mm_fallback should be safe for any ROCm GPU since it's just calling typical mm/bmm
|
||||
bool use_fast_path = false;
|
||||
if (at::detail::getCUDAHooks().isGPUArch({"gfx942", "gfx950"})) {
|
||||
use_fast_path = true;
|
||||
}
|
||||
#endif
|
||||
const auto out_dtype_ = _resolve_grouped_mm_out_dtype(mat_a, mat_b, out_dtype);
|
||||
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
|
||||
if (use_fast_path) {
|
||||
// fast path, no d2h sync needed
|
||||
#ifndef USE_ROCM
|
||||
at::cuda::detail::bf16bf16_grouped_mm(mat_a, mat_b, offs, bias, out);
|
||||
#else
|
||||
at::hip::detail::group_gemm_ck(mat_a, mat_b, offs, bias, out);
|
||||
#endif
|
||||
} else {
|
||||
_grouped_mm_fallback(mat_a, mat_b, offs, bias, out_dtype, out);
|
||||
}
|
||||
|
|
|
|||
19
aten/src/ATen/native/hip/ck_group_gemm.h
Normal file
19
aten/src/ATen/native/hip/ck_group_gemm.h
Normal file
|
|
@ -0,0 +1,19 @@
|
|||
#pragma once
|
||||
|
||||
#include <ATen/Tensor.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <optional>
|
||||
|
||||
namespace at {
|
||||
namespace hip {
|
||||
namespace detail {
|
||||
void group_gemm_ck(
|
||||
const at::Tensor& mat_a,
|
||||
const at::Tensor& mat_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
at::Tensor& out);
|
||||
|
||||
} // namespace detail
|
||||
} // namespace hip
|
||||
} // namespace at
|
||||
458
aten/src/ATen/native/hip/ck_group_gemm.hip
Normal file
458
aten/src/ATen/native/hip/ck_group_gemm.hip
Normal file
|
|
@ -0,0 +1,458 @@
|
|||
#undef __HIP_NO_HALF_CONVERSIONS__
|
||||
#include <ATen/hip/HIPContext.h>
|
||||
#include <ATen/Tensor.h>
|
||||
#include <ATen/TensorAccessor.h>
|
||||
#include <c10/hip/HIPStream.h>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <optional>
|
||||
#include <type_traits>
|
||||
|
||||
#include <ck/ck.hpp>
|
||||
#include <ck/tensor_operation/gpu/device/tensor_layout.hpp>
|
||||
#include <ck/tensor_operation/gpu/device/gemm_specialization.hpp>
|
||||
#include <ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_splitk_xdl_cshuffle_two_stage.hpp>
|
||||
#include <ck/tensor_operation/gpu/element/element_wise_operation.hpp>
|
||||
#include <ck/utility/tuple.hpp>
|
||||
|
||||
template <ck::index_t... Is>
|
||||
using S = ck::Sequence<Is...>;
|
||||
|
||||
namespace at {
|
||||
namespace hip {
|
||||
namespace detail {
|
||||
|
||||
namespace CkTypes {
|
||||
using BF16 = ck::bhalf_t;
|
||||
using F16 = ck::half_t;
|
||||
using F32 = float;
|
||||
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
|
||||
}
|
||||
|
||||
template <typename ALayout, typename BLayout, typename DataType>
|
||||
using GroupedGemmKernel = ck::tensor_operation::device::DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage<
|
||||
ALayout, BLayout, ck::Tuple<>, ck::tensor_layout::gemm::RowMajor,
|
||||
DataType, DataType, CkTypes::F32, DataType, ck::Tuple<>, DataType,
|
||||
CkTypes::PassThrough, CkTypes::PassThrough, CkTypes::PassThrough,
|
||||
ck::tensor_operation::device::GemmSpecialization::MNKPadding,
|
||||
1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2,
|
||||
S<1,4,64,1>, S<0,2,1,3>, S<0,2,1,3>,
|
||||
3, 8, 8, 1,
|
||||
S<1,4,64,1>, S<0,2,1,3>, S<0,2,1,3>,
|
||||
3, 8, 8, 1,
|
||||
1, 1,
|
||||
S<1,32,1,8>, 4
|
||||
>;
|
||||
|
||||
template <typename ALayout, typename BLayout, typename DataType>
|
||||
void launch_grouped_bgemm_ck_impl_dispatch(
|
||||
const at::Tensor& mat_a,
|
||||
const at::Tensor& mat_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
at::Tensor& out)
|
||||
{
|
||||
using DeviceOp = GroupedGemmKernel<ALayout, BLayout, DataType>;
|
||||
using PassThrough = CkTypes::PassThrough;
|
||||
|
||||
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
|
||||
std::vector<const void*> p_a_ptrs, p_b_ptrs;
|
||||
std::vector<void*> p_e_ptrs;
|
||||
// Note: d_ptrs will be resized after we populate the other vectors
|
||||
|
||||
const int mat_a_dim = mat_a.dim();
|
||||
const int mat_b_dim = mat_b.dim();
|
||||
|
||||
const char* a_ptr_base = reinterpret_cast<const char*>(mat_a.data_ptr());
|
||||
const char* b_ptr_base = reinterpret_cast<const char*>(mat_b.data_ptr());
|
||||
char* out_ptr_base = reinterpret_cast<char*>(out.data_ptr());
|
||||
const size_t a_element_size = mat_a.element_size();
|
||||
const size_t b_element_size = mat_b.element_size();
|
||||
const size_t out_element_size = out.element_size();
|
||||
|
||||
// for each group, calculate m,n,k,lda,ldb,ldc and A,B,out pointer base addresses.
|
||||
if (mat_a_dim == 2 && mat_b_dim == 2) {
|
||||
// 2D*2D case requires offset tensor
|
||||
auto offs_accessor = offs->accessor<int, 1>();
|
||||
int num_groups = offs_accessor.size(0);
|
||||
const int M = mat_a.size(0); // number of rows in A
|
||||
const int N = mat_b.size(1); // number of columns in B
|
||||
const int K = mat_a.size(1); // columns in A == rows in B
|
||||
// for 2d*2d input, output is 3d.
|
||||
// for each group, A columns (K) are sliced. M and N dimensions are not sliced.
|
||||
for (int i = 0; i < num_groups; ++i) {
|
||||
int start_k = (i == 0) ? 0 : offs_accessor[i-1];
|
||||
int end_k = offs_accessor[i];
|
||||
int k = end_k - start_k;
|
||||
|
||||
//K dimension are sliced, hence select stride(1) always.
|
||||
//K dimension is always dimension 1, regardless of memory layout (row/column major)
|
||||
const void* group_a_ptr = a_ptr_base + start_k * mat_a.stride(1) * a_element_size;
|
||||
const void* group_b_ptr;
|
||||
int ldb;
|
||||
|
||||
if (std::is_same<BLayout, ck::tensor_layout::gemm::RowMajor>::value) {
|
||||
// Row-major B [K,N]: K values are horizontally adjacent, use stride(1) for K offset
|
||||
group_b_ptr = b_ptr_base + start_k * mat_b.stride(1) * b_element_size;
|
||||
// Leading dimension = distance between rows = stride(0)
|
||||
ldb = mat_b.stride(0);
|
||||
} else {
|
||||
// Column-major B [K,N]: K values are vertically adjacent, use stride(0) for K offset
|
||||
group_b_ptr = b_ptr_base + start_k * mat_b.stride(0) * b_element_size;
|
||||
// Leading dimension = distance between columns = stride(1)
|
||||
ldb = mat_b.stride(1);
|
||||
}
|
||||
|
||||
// Calculate output pointer for group i in 3D tensor [num_groups, M, N]
|
||||
// stride(0) = M*N elements between groups, so skip i*stride(0) elements to reach group i
|
||||
void* group_e_ptr = out_ptr_base + i * out.stride(0) * out_element_size;
|
||||
int lda, ldc;
|
||||
if (std::is_same<ALayout, ck::tensor_layout::gemm::RowMajor>::value) {
|
||||
// Row-major A [M,K]: leading dimension = distance between rows = stride(0)
|
||||
lda = mat_a.stride(0);
|
||||
} else {
|
||||
// Column-major A [M,K]: leading dimension = distance between columns = stride(1)
|
||||
lda = mat_a.stride(1);
|
||||
}
|
||||
// Output is always row-major in 3D tensor [num_groups, M, N]
|
||||
// Leading dimension for each group's [M,N] slice = stride(1) = N
|
||||
ldc = out.stride(1);
|
||||
size_t output_group_bytes = M * N * out_element_size;
|
||||
void* group_e_ptr_end = (char*)group_e_ptr + output_group_bytes;
|
||||
|
||||
gemm_descs.push_back({
|
||||
static_cast<ck::index_t>(M),
|
||||
static_cast<ck::index_t>(N),
|
||||
static_cast<ck::index_t>(k),
|
||||
static_cast<ck::index_t>(lda),
|
||||
static_cast<ck::index_t>(ldb),
|
||||
static_cast<ck::index_t>(ldc)
|
||||
});
|
||||
p_a_ptrs.push_back(group_a_ptr);
|
||||
p_b_ptrs.push_back(group_b_ptr);
|
||||
p_e_ptrs.push_back(group_e_ptr);
|
||||
}
|
||||
} else if (mat_a_dim == 2 && mat_b_dim == 3) {
|
||||
// 2D*3D case requires offset tensor
|
||||
auto offs_accessor = offs->accessor<int, 1>();
|
||||
int num_groups = offs_accessor.size(0);
|
||||
|
||||
// 2d*3d input, output is 2d.
|
||||
// A: [m * n_groups, k], B: [n_groups, n, k] or [n_groups, k, n], Output: [m * n_groups, n]
|
||||
// Offset divides M dimension (rows of A), each group gets different rows of A and different batch of B
|
||||
const int K = mat_a.size(1); // columns in A
|
||||
// For 2D-3D case: The output determines N (result width)
|
||||
const int N = out.size(1); // N is the width of the output tensor
|
||||
|
||||
for (int i = 0; i < num_groups; ++i) {
|
||||
int start_m = (i == 0) ? 0 : offs_accessor[i - 1];
|
||||
int end_m = offs_accessor[i];
|
||||
int m = end_m - start_m;
|
||||
|
||||
// Skip zero-sized groups but continue processing subsequent groups
|
||||
if (m <= 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Select A rows for group i: skip start_m rows
|
||||
const void* group_a_ptr;
|
||||
int lda;
|
||||
if (std::is_same<ALayout, ck::tensor_layout::gemm::RowMajor>::value) {
|
||||
// Row-major A [total_m, K]: skip start_m rows, each row is stride(0) elements apart
|
||||
group_a_ptr = a_ptr_base + start_m * mat_a.stride(0) * a_element_size;
|
||||
lda = mat_a.stride(0); // distance between rows
|
||||
} else {
|
||||
// Column-major A [total_m, K]: skip start_m elements in the first dimension (stride(0) is between rows)
|
||||
group_a_ptr = a_ptr_base + start_m * mat_a.stride(0) * a_element_size;
|
||||
|
||||
// Detect stride pattern for A tensor to determine appropriate lda calculation
|
||||
bool a_is_strided_tensor = (mat_a.stride(0) > mat_a.size(0));
|
||||
|
||||
if (a_is_strided_tensor) {
|
||||
// For strided A tensors: stride(0) gives the actual leading dimension
|
||||
lda = mat_a.stride(0);
|
||||
} else {
|
||||
// For non-strided A tensors: use the M dimension (total rows)
|
||||
lda = mat_a.size(0); // Total M dimension for column-major layout
|
||||
}
|
||||
}
|
||||
|
||||
// Select B batch for group i: B[i, :, :]
|
||||
const void* group_b_ptr = b_ptr_base + i * mat_b.stride(0) * b_element_size;
|
||||
int ldb;
|
||||
|
||||
if (std::is_same<BLayout, ck::tensor_layout::gemm::RowMajor>::value) {
|
||||
// Row-major GEMM: expecting B as [K, N] but we have [N, K], so transpose needed
|
||||
ldb = mat_b.stride(2); // Leading dimension for accessing as [K, N]
|
||||
} else {
|
||||
// Detect stride pattern to determine appropriate ldb calculation
|
||||
bool is_strided_tensor = (mat_b.stride(2) > mat_b.size(2));
|
||||
|
||||
if (is_strided_tensor) {
|
||||
// For strided tensors: stride(2) gives the actual leading dimension
|
||||
ldb = mat_b.stride(2);
|
||||
} else {
|
||||
// For non-strided tensors: use the N dimension
|
||||
ldb = mat_b.size(1);
|
||||
}
|
||||
}
|
||||
|
||||
// Output for this group: rows [start_m:end_m, :] in 2D output [total_m, N]
|
||||
void* group_e_ptr = out_ptr_base + start_m * out.stride(0) * out_element_size;
|
||||
int ldc = out.stride(0); // distance between rows in output (should be N for 2D case)
|
||||
|
||||
gemm_descs.push_back({
|
||||
static_cast<ck::index_t>(m),
|
||||
static_cast<ck::index_t>(N),
|
||||
static_cast<ck::index_t>(K),
|
||||
static_cast<ck::index_t>(lda),
|
||||
static_cast<ck::index_t>(ldb),
|
||||
static_cast<ck::index_t>(ldc)
|
||||
});
|
||||
p_a_ptrs.push_back(group_a_ptr);
|
||||
p_b_ptrs.push_back(group_b_ptr);
|
||||
p_e_ptrs.push_back(group_e_ptr);
|
||||
}
|
||||
} else if (mat_a_dim == 3 && mat_b_dim == 3) {
|
||||
// 3d*3d input, output is 3d - batched matrix multiplication
|
||||
// A: [batch, m, k], B: [batch, k, n] or [batch, n, k] (depending on transpose), Output: [batch, m, n]
|
||||
// Each batch is processed as a separate GEMM operation
|
||||
const int batch_size = mat_a.size(0);
|
||||
const int M = mat_a.size(1); // rows in each A matrix
|
||||
const int K = mat_a.size(2); // columns in A == rows in B (or columns if B is transposed)
|
||||
|
||||
// Determine N from B tensor - it could be B.size(1) or B.size(2) depending on layout
|
||||
int N;
|
||||
if (mat_b.size(1) == K) {
|
||||
// B is [batch, k, n] - normal layout
|
||||
N = mat_b.size(2);
|
||||
} else if (mat_b.size(2) == K) {
|
||||
// B is [batch, n, k] - transposed layout
|
||||
N = mat_b.size(1);
|
||||
} else {
|
||||
TORCH_CHECK(false, "CK Group GEMM 3D-3D: B tensor dimensions incompatible with A. A=[",
|
||||
batch_size, ",", M, ",", K, "], B=[", mat_b.size(0), ",", mat_b.size(1), ",", mat_b.size(2), "]");
|
||||
}
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
// Select A batch for group i: A[i, :, :]
|
||||
const void* group_a_ptr = a_ptr_base + i * mat_a.stride(0) * a_element_size;
|
||||
|
||||
// Select B batch for group i: B[i, :, :]
|
||||
const void* group_b_ptr = b_ptr_base + i * mat_b.stride(0) * b_element_size;
|
||||
|
||||
// Select output batch for group i: Output[i, :, :]
|
||||
void* group_e_ptr = out_ptr_base + i * out.stride(0) * out_element_size;
|
||||
|
||||
int lda, ldb, ldc;
|
||||
|
||||
if (std::is_same<ALayout, ck::tensor_layout::gemm::RowMajor>::value) {
|
||||
// Row-major A: leading dimension = distance between rows = stride(1)
|
||||
lda = mat_a.stride(1);
|
||||
} else {
|
||||
// Column-major A: leading dimension = distance between columns = stride(2)
|
||||
lda = mat_a.stride(2);
|
||||
}
|
||||
|
||||
if (std::is_same<BLayout, ck::tensor_layout::gemm::RowMajor>::value) {
|
||||
// Row-major B: leading dimension = distance between rows
|
||||
if (mat_b.size(1) == K) {
|
||||
// B is [batch, k, n] - normal layout
|
||||
ldb = mat_b.stride(1); // stride between K rows
|
||||
} else {
|
||||
// B is [batch, n, k] - transposed layout, treat as [k, n] for GEMM
|
||||
ldb = mat_b.stride(2); // stride between N rows (since we're accessing as [k,n])
|
||||
}
|
||||
} else {
|
||||
// Column-major B: leading dimension = distance between columns
|
||||
if (mat_b.size(1) == K) {
|
||||
// B is [batch, k, n] - normal layout
|
||||
ldb = mat_b.stride(2); // stride between N columns
|
||||
} else {
|
||||
// B is [batch, n, k] - transposed layout
|
||||
ldb = mat_b.stride(1); // stride between K columns (since we're accessing as [n,k]→[k,n])
|
||||
}
|
||||
}
|
||||
|
||||
// Output is typically row-major: leading dimension = distance between rows = stride(1)
|
||||
ldc = out.stride(1);
|
||||
|
||||
gemm_descs.push_back({
|
||||
static_cast<ck::index_t>(M),
|
||||
static_cast<ck::index_t>(N),
|
||||
static_cast<ck::index_t>(K),
|
||||
static_cast<ck::index_t>(lda),
|
||||
static_cast<ck::index_t>(ldb),
|
||||
static_cast<ck::index_t>(ldc)
|
||||
});
|
||||
p_a_ptrs.push_back(group_a_ptr);
|
||||
p_b_ptrs.push_back(group_b_ptr);
|
||||
p_e_ptrs.push_back(group_e_ptr);
|
||||
}
|
||||
} else if (mat_a_dim == 3 && mat_b_dim == 2) {
|
||||
// 3D*2D case requires offset tensor
|
||||
auto offs_accessor = offs->accessor<int, 1>();
|
||||
int num_groups = offs_accessor.size(0);
|
||||
// 3d*2d input, output is 3d.
|
||||
// A: [n_groups, m, k], B: [k, total_n] (assuming row-major for both)
|
||||
// Offset divides N dimension of B, each group gets different slice of B and different batch of A
|
||||
const int batch_size = mat_a.size(0); // n_groups
|
||||
const int M = mat_a.size(1); // rows in each A matrix
|
||||
const int K = mat_a.size(2); // columns in A
|
||||
|
||||
// For row-major A and B case: B should be [K, total_N]
|
||||
const int total_N = mat_b.size(1); // B is [K, total_N] for row-major
|
||||
|
||||
for (int i = 0; i < num_groups; ++i) {
|
||||
int start_n = (i == 0) ? 0 : offs_accessor[i - 1];
|
||||
int end_n = offs_accessor[i];
|
||||
int n = end_n - start_n;
|
||||
|
||||
// Skip zero-sized groups but continue processing subsequent groups
|
||||
if (n <= 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Select A batch for group i: A[i, :, :]
|
||||
const void* group_a_ptr = a_ptr_base + i * mat_a.stride(0) * a_element_size;
|
||||
|
||||
// Select B slice for group i: B[:, start_n:end_n] (B[K, total_N])
|
||||
const void* group_b_ptr;
|
||||
int ldb;
|
||||
|
||||
// Check if B is row-major or column-major
|
||||
if (std::is_same<BLayout, ck::tensor_layout::gemm::RowMajor>::value) {
|
||||
// Row-major B [K, total_N]: slice columns [start_n:end_n]
|
||||
group_b_ptr = b_ptr_base + start_n * mat_b.stride(1) * b_element_size;
|
||||
ldb = mat_b.stride(0); // distance between rows (should be total_N)
|
||||
} else {
|
||||
// Column-major B [K, total_N]: slice columns [start_n:end_n]
|
||||
group_b_ptr = b_ptr_base + start_n * mat_b.stride(1) * b_element_size;
|
||||
ldb = mat_b.stride(1); // distance between columns (should be K)
|
||||
}
|
||||
|
||||
// Select output slice for group i: Output[:, start_n:end_n]
|
||||
void* group_e_ptr = out_ptr_base + start_n * out.stride(1) * out_element_size;
|
||||
|
||||
int lda, ldc;
|
||||
|
||||
// Row-major A: leading dimension = distance between rows = stride(1)
|
||||
lda = mat_a.stride(1);
|
||||
// Output is row-major: leading dimension = distance between rows = stride(0)
|
||||
ldc = out.stride(0);
|
||||
|
||||
gemm_descs.push_back({
|
||||
static_cast<ck::index_t>(M),
|
||||
static_cast<ck::index_t>(n),
|
||||
static_cast<ck::index_t>(K),
|
||||
static_cast<ck::index_t>(lda),
|
||||
static_cast<ck::index_t>(ldb),
|
||||
static_cast<ck::index_t>(ldc)
|
||||
});
|
||||
p_a_ptrs.push_back(group_a_ptr);
|
||||
p_b_ptrs.push_back(group_b_ptr);
|
||||
p_e_ptrs.push_back(group_e_ptr);
|
||||
}
|
||||
} else {
|
||||
TORCH_CHECK(false, "CK Group GEMM: Unsupported dimensions, mat A dim is ", mat_a_dim, ", mat B dim is ", mat_b_dim);
|
||||
}
|
||||
|
||||
TORCH_INTERNAL_ASSERT(p_a_ptrs.size() > 0, "CK Group GEMM: No valid groups");
|
||||
|
||||
// Initialize d_ptrs with the correct size
|
||||
std::vector<std::array<const void*, 0>> d_ptrs(p_a_ptrs.size());
|
||||
|
||||
static DeviceOp gemm_instance;
|
||||
auto argument = gemm_instance.MakeArgument(
|
||||
p_a_ptrs, p_b_ptrs, d_ptrs, p_e_ptrs,
|
||||
gemm_descs, PassThrough{}, PassThrough{}, PassThrough{}
|
||||
);
|
||||
TORCH_INTERNAL_ASSERT(gemm_instance.IsSupportedArgument(argument),
|
||||
"CK Group GEMM: argument unsupported (shape/strides/type config)");
|
||||
size_t arg_buf_size = gemm_instance.GetDeviceKernelArgSize(&argument);
|
||||
size_t ws_size = gemm_instance.GetWorkSpaceSize(&argument);
|
||||
|
||||
void* gemm_arg_buf = nullptr;
|
||||
void* ws_buf = nullptr;
|
||||
|
||||
hipMalloc(&gemm_arg_buf, arg_buf_size);
|
||||
hipMalloc(&ws_buf, ws_size);
|
||||
|
||||
gemm_instance.SetDeviceKernelArgs(&argument, gemm_arg_buf);
|
||||
gemm_instance.SetWorkSpacePointer(&argument, ws_buf);
|
||||
|
||||
auto invoker = gemm_instance.MakeInvoker();
|
||||
hipStream_t stream = c10::hip::getCurrentHIPStream();
|
||||
invoker.Run(argument, {stream});
|
||||
hipFree(gemm_arg_buf);
|
||||
hipFree(ws_buf);
|
||||
}
|
||||
|
||||
void group_gemm_ck(
|
||||
const at::Tensor& input_a,
|
||||
const at::Tensor& input_b_colmajor,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
const std::optional<at::Tensor>& /*bias*/,
|
||||
at::Tensor& out)
|
||||
{
|
||||
// Detect if input_a is row-major based on stride pattern
|
||||
bool a_row_major = (input_a.dim() == 3) ? (input_a.stride(2) == 1) : (input_a.stride(1) == 1);
|
||||
bool b_col_major = (input_b_colmajor.dim() == 3) ? (input_b_colmajor.stride(1) == 1) : (input_b_colmajor.stride(0) == 1);
|
||||
// Ensure tensor A is row-major and contiguous if not already
|
||||
at::Tensor mat_a = input_a;
|
||||
if (!a_row_major) {
|
||||
// If A is not row-major, make it contiguous (row-major)
|
||||
mat_a = input_a.contiguous();
|
||||
}
|
||||
// Force tensor B to be column-major using double transpose trick
|
||||
// This guarantees stride(0) == 1 and stride(1) == K for [K, N] shape
|
||||
at::Tensor mat_b = input_b_colmajor;
|
||||
if (!b_col_major) {
|
||||
mat_b = input_b_colmajor.transpose(-2, -1).contiguous().transpose(-2, -1);
|
||||
}
|
||||
|
||||
// For 3D tensors, check the last dimension stride for row-major detection
|
||||
a_row_major = (mat_a.dim() == 3) ? (mat_a.stride(2) == 1) : (mat_a.stride(1) == 1);
|
||||
bool b_row_major = (mat_b.dim() == 3) ? (mat_b.stride(2) == 1) : (mat_b.stride(1) == 1);
|
||||
|
||||
if (mat_a.dtype() == at::kBFloat16) {
|
||||
// bf16 path
|
||||
if (a_row_major && b_row_major) {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::BF16>(mat_a, mat_b, offs, out);
|
||||
} else if (a_row_major && !b_row_major) {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::BF16>(mat_a, mat_b, offs, out);
|
||||
} else if (!a_row_major && b_row_major) {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::BF16>(mat_a, mat_b, offs, out);
|
||||
} else {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::BF16>(mat_a, mat_b, offs, out);
|
||||
}
|
||||
} else if (mat_a.dtype() == at::kHalf) {
|
||||
// fp16 path
|
||||
if (a_row_major && b_row_major) {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::F16>(mat_a, mat_b, offs, out);
|
||||
} else if (a_row_major && !b_row_major) {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::F16>(mat_a, mat_b, offs, out);
|
||||
} else if (!a_row_major && b_row_major) {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::F16>(mat_a, mat_b, offs, out);
|
||||
} else {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::F16>(mat_a, mat_b, offs, out);
|
||||
}
|
||||
} else if (mat_a.dtype() == at::kFloat) {
|
||||
// fp32 path
|
||||
if (a_row_major && b_row_major) {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::F32>(mat_a, mat_b, offs, out);
|
||||
} else if (a_row_major && !b_row_major) {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::F32>(mat_a, mat_b, offs, out);
|
||||
} else if (!a_row_major && b_row_major) {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::F32>(mat_a, mat_b, offs, out);
|
||||
} else {
|
||||
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::F32>(mat_a, mat_b, offs, out);
|
||||
}
|
||||
} else {
|
||||
TORCH_CHECK(false, "CK Group GEMM: Unsupported mat_a dtype");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
} // namespace hip
|
||||
} // namespace at
|
||||
|
|
@ -459,8 +459,6 @@ class TestMatmulCuda(InductorTestCase):
|
|||
@parametrize("b_row_major", [False, True])
|
||||
@dtypes(torch.bfloat16, torch.float32, torch.float16)
|
||||
def test_grouped_gemm_3d_2d(self, strided, a_row_major, b_row_major, dtype):
|
||||
if TEST_WITH_ROCM and a_row_major and b_row_major and dtype in [torch.bfloat16, torch.float16]:
|
||||
self.skipTest("failed using hipblaslt on rocm 6.4.2")
|
||||
device = "cuda"
|
||||
s_int = int(strided)
|
||||
m, n, k, n_groups = 16, 32, 64, 4
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user