mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
[BC breaking] Remove check_sparse_nnz argument of gradcheck (#115658)
As in title per deprecation plan. Pull Request resolved: https://github.com/pytorch/pytorch/pull/115658 Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
This commit is contained in:
parent
310f6ab11a
commit
193f87857e
|
|
@ -162,58 +162,6 @@ class TestSparseLegacyAndDeprecation(TestCase):
|
||||||
# Check warn-once:
|
# Check warn-once:
|
||||||
self.assertEqual(len(cm.warnings), 1)
|
self.assertEqual(len(cm.warnings), 1)
|
||||||
|
|
||||||
@parametrize('fast_mode', (True, False))
|
|
||||||
def test_gradcheck_check_sparse_nnz(self, fast_mode):
|
|
||||||
"""Tests for deprecated check_sparse_nnz keyword argument of gradcheck.
|
|
||||||
|
|
||||||
Deprecation steps:
|
|
||||||
2.1: Specification of check_sparse_nnz triggers a warning.
|
|
||||||
2.2: Specification of check_sparse_nnz triggers an
|
|
||||||
exception. Remove all check_sparse_nnz usages from
|
|
||||||
gradcheck and delete this test.
|
|
||||||
"""
|
|
||||||
def fn(x, masked_grad):
|
|
||||||
return x.to_dense(masked_grad=masked_grad)
|
|
||||||
|
|
||||||
def test(x, masked_grad, masked, check_sparse_nnz):
|
|
||||||
x = x.detach().clone().requires_grad_()
|
|
||||||
torch.autograd.gradcheck(fn, (x, masked_grad), masked=masked, check_sparse_nnz=check_sparse_nnz, fast_mode=fast_mode)
|
|
||||||
|
|
||||||
x = torch.tensor([[0, 2], [3, 4]], dtype=torch.float64).to_sparse()
|
|
||||||
|
|
||||||
for masked_grad, masked, check_sparse_nnz in itertools.product(*[(True, False, None)] * 3):
|
|
||||||
effective_masked_grad = True if masked_grad is None else masked_grad
|
|
||||||
effective_check_sparse_nnz = False if check_sparse_nnz is None else check_sparse_nnz
|
|
||||||
# For BC, the effective masked depends on the value of specified check_sparse_nnz:
|
|
||||||
effective_masked = (check_sparse_nnz if check_sparse_nnz is not None else False) if masked is None else masked
|
|
||||||
|
|
||||||
warn_using_check_sparse_nnz = self.assertWarns(
|
|
||||||
UserWarning,
|
|
||||||
msg=('Backwards compatibility: check_sparse_nnz is deprecated, it will be removed in a future version of PyTorch.'
|
|
||||||
f' Use masked={effective_check_sparse_nnz} instead.'))
|
|
||||||
raise_on_non_equal_masked_and_check_sparse_nnz = self.assertRaisesRegex(
|
|
||||||
ValueError,
|
|
||||||
f"Expected specified check_sparse_nnz [(]={effective_check_sparse_nnz}[)]"
|
|
||||||
f" to be equal to masked [(]={effective_masked}[)]")
|
|
||||||
raise_jacobian_mismatch = self.assertRaisesRegex(RuntimeError, "Jacobian mismatch for output 0 with respect to input 0")
|
|
||||||
|
|
||||||
def run_test():
|
|
||||||
if effective_masked_grad != effective_masked and not fast_mode:
|
|
||||||
with raise_jacobian_mismatch:
|
|
||||||
test(x, masked_grad, masked, check_sparse_nnz)
|
|
||||||
else:
|
|
||||||
test(x, masked_grad, masked, check_sparse_nnz)
|
|
||||||
|
|
||||||
if masked != check_sparse_nnz and None not in {masked, check_sparse_nnz}:
|
|
||||||
# the specified masked and check_sparse_nnz must match
|
|
||||||
with warn_using_check_sparse_nnz:
|
|
||||||
with raise_on_non_equal_masked_and_check_sparse_nnz:
|
|
||||||
test(x, masked_grad, masked, check_sparse_nnz)
|
|
||||||
elif check_sparse_nnz is not None:
|
|
||||||
with warn_using_check_sparse_nnz:
|
|
||||||
run_test()
|
|
||||||
else:
|
|
||||||
self.assertNotWarn(run_test)
|
|
||||||
|
|
||||||
class TestSparseBase(TestCase):
|
class TestSparseBase(TestCase):
|
||||||
def run(self, result=None):
|
def run(self, result=None):
|
||||||
|
|
|
||||||
|
|
@ -1951,7 +1951,6 @@ def gradcheck(
|
||||||
atol: float = 1e-5,
|
atol: float = 1e-5,
|
||||||
rtol: float = 1e-3,
|
rtol: float = 1e-3,
|
||||||
raise_exception: bool = True,
|
raise_exception: bool = True,
|
||||||
check_sparse_nnz: Optional[bool] = None,
|
|
||||||
nondet_tol: float = 0.0,
|
nondet_tol: float = 0.0,
|
||||||
check_undefined_grad: bool = True,
|
check_undefined_grad: bool = True,
|
||||||
check_grad_dtypes: bool = False,
|
check_grad_dtypes: bool = False,
|
||||||
|
|
@ -2006,12 +2005,6 @@ def gradcheck(
|
||||||
raise_exception (bool, optional): indicating whether to raise an exception if
|
raise_exception (bool, optional): indicating whether to raise an exception if
|
||||||
the check fails. The exception gives more information about the
|
the check fails. The exception gives more information about the
|
||||||
exact nature of the failure. This is helpful when debugging gradchecks.
|
exact nature of the failure. This is helpful when debugging gradchecks.
|
||||||
check_sparse_nnz (bool, optional): if ``True``, gradcheck allows
|
|
||||||
for SparseTensor input, and for any SparseTensor inputs,
|
|
||||||
gradcheck will perform its check at ``nnz`` positions only.
|
|
||||||
The ``check_sparse_nnz`` argument is deprecated, use the
|
|
||||||
``masked`` argument instead. If ``check_sparse_nnz != masked``, an
|
|
||||||
exception is raised.
|
|
||||||
nondet_tol (float, optional): tolerance for non-determinism. When running
|
nondet_tol (float, optional): tolerance for non-determinism. When running
|
||||||
identical inputs through the differentiation, the results must either match
|
identical inputs through the differentiation, the results must either match
|
||||||
exactly (default, 0.0) or be within this tolerance.
|
exactly (default, 0.0) or be within this tolerance.
|
||||||
|
|
@ -2035,22 +2028,6 @@ def gradcheck(
|
||||||
``True`` if all differences satisfy allclose condition
|
``True`` if all differences satisfy allclose condition
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if check_sparse_nnz is None:
|
|
||||||
if masked is None:
|
|
||||||
check_sparse_nnz = masked = False
|
|
||||||
else:
|
|
||||||
check_sparse_nnz = masked
|
|
||||||
else:
|
|
||||||
warnings.warn(
|
|
||||||
"Backwards compatibility: check_sparse_nnz is deprecated, it will be removed in a future version of PyTorch."
|
|
||||||
f" Use masked={check_sparse_nnz} instead."
|
|
||||||
)
|
|
||||||
if masked is None:
|
|
||||||
masked = check_sparse_nnz
|
|
||||||
elif check_sparse_nnz != masked:
|
|
||||||
raise ValueError(
|
|
||||||
f"Expected specified check_sparse_nnz (={check_sparse_nnz}) to be equal to masked (={masked})."
|
|
||||||
)
|
|
||||||
assert (
|
assert (
|
||||||
check_forward_ad or check_backward_ad
|
check_forward_ad or check_backward_ad
|
||||||
), "Expected at least one of check_forward_ad or check_backward_ad to be True"
|
), "Expected at least one of check_forward_ad or check_backward_ad to be True"
|
||||||
|
|
@ -2062,7 +2039,6 @@ def gradcheck(
|
||||||
), "Setting check_batched_forward_grad=True requires check_forward_ad to be True"
|
), "Setting check_batched_forward_grad=True requires check_forward_ad to be True"
|
||||||
args = locals().copy()
|
args = locals().copy()
|
||||||
args.pop("raise_exception")
|
args.pop("raise_exception")
|
||||||
args.pop("check_sparse_nnz")
|
|
||||||
if not raise_exception:
|
if not raise_exception:
|
||||||
try:
|
try:
|
||||||
return _gradcheck_helper(**args)
|
return _gradcheck_helper(**args)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue
Block a user