mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[BC breaking] Remove check_sparse_nnz argument of gradcheck (#115658)
As in title per deprecation plan. Pull Request resolved: https://github.com/pytorch/pytorch/pull/115658 Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
This commit is contained in:
parent
310f6ab11a
commit
193f87857e
|
|
@ -162,58 +162,6 @@ class TestSparseLegacyAndDeprecation(TestCase):
|
|||
# Check warn-once:
|
||||
self.assertEqual(len(cm.warnings), 1)
|
||||
|
||||
@parametrize('fast_mode', (True, False))
|
||||
def test_gradcheck_check_sparse_nnz(self, fast_mode):
|
||||
"""Tests for deprecated check_sparse_nnz keyword argument of gradcheck.
|
||||
|
||||
Deprecation steps:
|
||||
2.1: Specification of check_sparse_nnz triggers a warning.
|
||||
2.2: Specification of check_sparse_nnz triggers an
|
||||
exception. Remove all check_sparse_nnz usages from
|
||||
gradcheck and delete this test.
|
||||
"""
|
||||
def fn(x, masked_grad):
|
||||
return x.to_dense(masked_grad=masked_grad)
|
||||
|
||||
def test(x, masked_grad, masked, check_sparse_nnz):
|
||||
x = x.detach().clone().requires_grad_()
|
||||
torch.autograd.gradcheck(fn, (x, masked_grad), masked=masked, check_sparse_nnz=check_sparse_nnz, fast_mode=fast_mode)
|
||||
|
||||
x = torch.tensor([[0, 2], [3, 4]], dtype=torch.float64).to_sparse()
|
||||
|
||||
for masked_grad, masked, check_sparse_nnz in itertools.product(*[(True, False, None)] * 3):
|
||||
effective_masked_grad = True if masked_grad is None else masked_grad
|
||||
effective_check_sparse_nnz = False if check_sparse_nnz is None else check_sparse_nnz
|
||||
# For BC, the effective masked depends on the value of specified check_sparse_nnz:
|
||||
effective_masked = (check_sparse_nnz if check_sparse_nnz is not None else False) if masked is None else masked
|
||||
|
||||
warn_using_check_sparse_nnz = self.assertWarns(
|
||||
UserWarning,
|
||||
msg=('Backwards compatibility: check_sparse_nnz is deprecated, it will be removed in a future version of PyTorch.'
|
||||
f' Use masked={effective_check_sparse_nnz} instead.'))
|
||||
raise_on_non_equal_masked_and_check_sparse_nnz = self.assertRaisesRegex(
|
||||
ValueError,
|
||||
f"Expected specified check_sparse_nnz [(]={effective_check_sparse_nnz}[)]"
|
||||
f" to be equal to masked [(]={effective_masked}[)]")
|
||||
raise_jacobian_mismatch = self.assertRaisesRegex(RuntimeError, "Jacobian mismatch for output 0 with respect to input 0")
|
||||
|
||||
def run_test():
|
||||
if effective_masked_grad != effective_masked and not fast_mode:
|
||||
with raise_jacobian_mismatch:
|
||||
test(x, masked_grad, masked, check_sparse_nnz)
|
||||
else:
|
||||
test(x, masked_grad, masked, check_sparse_nnz)
|
||||
|
||||
if masked != check_sparse_nnz and None not in {masked, check_sparse_nnz}:
|
||||
# the specified masked and check_sparse_nnz must match
|
||||
with warn_using_check_sparse_nnz:
|
||||
with raise_on_non_equal_masked_and_check_sparse_nnz:
|
||||
test(x, masked_grad, masked, check_sparse_nnz)
|
||||
elif check_sparse_nnz is not None:
|
||||
with warn_using_check_sparse_nnz:
|
||||
run_test()
|
||||
else:
|
||||
self.assertNotWarn(run_test)
|
||||
|
||||
class TestSparseBase(TestCase):
|
||||
def run(self, result=None):
|
||||
|
|
|
|||
|
|
@ -1951,7 +1951,6 @@ def gradcheck(
|
|||
atol: float = 1e-5,
|
||||
rtol: float = 1e-3,
|
||||
raise_exception: bool = True,
|
||||
check_sparse_nnz: Optional[bool] = None,
|
||||
nondet_tol: float = 0.0,
|
||||
check_undefined_grad: bool = True,
|
||||
check_grad_dtypes: bool = False,
|
||||
|
|
@ -2006,12 +2005,6 @@ def gradcheck(
|
|||
raise_exception (bool, optional): indicating whether to raise an exception if
|
||||
the check fails. The exception gives more information about the
|
||||
exact nature of the failure. This is helpful when debugging gradchecks.
|
||||
check_sparse_nnz (bool, optional): if ``True``, gradcheck allows
|
||||
for SparseTensor input, and for any SparseTensor inputs,
|
||||
gradcheck will perform its check at ``nnz`` positions only.
|
||||
The ``check_sparse_nnz`` argument is deprecated, use the
|
||||
``masked`` argument instead. If ``check_sparse_nnz != masked``, an
|
||||
exception is raised.
|
||||
nondet_tol (float, optional): tolerance for non-determinism. When running
|
||||
identical inputs through the differentiation, the results must either match
|
||||
exactly (default, 0.0) or be within this tolerance.
|
||||
|
|
@ -2035,22 +2028,6 @@ def gradcheck(
|
|||
``True`` if all differences satisfy allclose condition
|
||||
|
||||
"""
|
||||
if check_sparse_nnz is None:
|
||||
if masked is None:
|
||||
check_sparse_nnz = masked = False
|
||||
else:
|
||||
check_sparse_nnz = masked
|
||||
else:
|
||||
warnings.warn(
|
||||
"Backwards compatibility: check_sparse_nnz is deprecated, it will be removed in a future version of PyTorch."
|
||||
f" Use masked={check_sparse_nnz} instead."
|
||||
)
|
||||
if masked is None:
|
||||
masked = check_sparse_nnz
|
||||
elif check_sparse_nnz != masked:
|
||||
raise ValueError(
|
||||
f"Expected specified check_sparse_nnz (={check_sparse_nnz}) to be equal to masked (={masked})."
|
||||
)
|
||||
assert (
|
||||
check_forward_ad or check_backward_ad
|
||||
), "Expected at least one of check_forward_ad or check_backward_ad to be True"
|
||||
|
|
@ -2062,7 +2039,6 @@ def gradcheck(
|
|||
), "Setting check_batched_forward_grad=True requires check_forward_ad to be True"
|
||||
args = locals().copy()
|
||||
args.pop("raise_exception")
|
||||
args.pop("check_sparse_nnz")
|
||||
if not raise_exception:
|
||||
try:
|
||||
return _gradcheck_helper(**args)
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user