mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Convert to .md: onnx_verification.rst, onnx.rst, package.rst, (#155556)
Fixes https://github.com/pytorch/pytorch/issues/155031 * [onnx_verification.rst](https://github.com/pytorch/pytorch/tree/main/docs/source/onnx_verification.rst) * [onnx.rst](https://github.com/pytorch/pytorch/tree/main/docs/source/onnx.rst) * [package.rst](https://github.com/pytorch/pytorch/tree/main/docs/source/package.rst) Pull Request resolved: https://github.com/pytorch/pytorch/pull/155556 Approved by: https://github.com/AlannaBurke, https://github.com/sekyondaMeta
This commit is contained in:
parent
ae0f1f8984
commit
14f3639e09
116
docs/source/onnx.md
Normal file
116
docs/source/onnx.md
Normal file
|
|
@ -0,0 +1,116 @@
|
|||
# torch.onnx
|
||||
|
||||
|
||||
## Overview
|
||||
|
||||
[Open Neural Network eXchange (ONNX)](https://onnx.ai/) is an open standard
|
||||
format for representing machine learning models. The `torch.onnx` module captures the computation graph from a
|
||||
native PyTorch {class}`torch.nn.Module` model and converts it into an
|
||||
[ONNX graph](https://github.com/onnx/onnx/blob/main/docs/IR.md).
|
||||
|
||||
The exported model can be consumed by any of the many
|
||||
[runtimes that support ONNX](https://onnx.ai/supported-tools.html#deployModel), including
|
||||
Microsoft's [ONNX Runtime](https://www.onnxruntime.ai).
|
||||
|
||||
**There are two flavors of ONNX exporter API that you can use, as listed below.**
|
||||
Both can be called through function {func}`torch.onnx.export`.
|
||||
Next example shows how to export a simple model.
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(MyModel, self).__init__()
|
||||
self.conv1 = torch.nn.Conv2d(1, 128, 5)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.relu(self.conv1(x))
|
||||
|
||||
input_tensor = torch.rand((1, 1, 128, 128), dtype=torch.float32)
|
||||
|
||||
model = MyModel()
|
||||
|
||||
torch.onnx.export(
|
||||
model, # model to export
|
||||
(input_tensor,), # inputs of the model,
|
||||
"my_model.onnx", # filename of the ONNX model
|
||||
input_names=["input"], # Rename inputs for the ONNX model
|
||||
dynamo=True # True or False to select the exporter to use
|
||||
)
|
||||
```
|
||||
|
||||
Next sections introduce the two versions of the exporter.
|
||||
|
||||
## TorchDynamo-based ONNX Exporter
|
||||
|
||||
*The TorchDynamo-based ONNX exporter is the newest (and Beta) exporter for PyTorch 2.1 and newer*
|
||||
|
||||
TorchDynamo engine is leveraged to hook into Python's frame evaluation API and dynamically rewrite its
|
||||
bytecode into an FX Graph. The resulting FX Graph is then polished before it is finally translated into an
|
||||
ONNX graph.
|
||||
|
||||
The main advantage of this approach is that the [FX graph](https://pytorch.org/docs/stable/fx.html) is captured using
|
||||
bytecode analysis that preserves the dynamic nature of the model instead of using traditional static tracing techniques.
|
||||
|
||||
{doc}`Learn more about the TorchDynamo-based ONNX Exporter <onnx_dynamo>`
|
||||
|
||||
## TorchScript-based ONNX Exporter
|
||||
|
||||
*The TorchScript-based ONNX exporter is available since PyTorch 1.2.0*
|
||||
|
||||
[TorchScript](https://pytorch.org/docs/stable/jit.html) is leveraged to trace (through {func}`torch.jit.trace`)
|
||||
the model and capture a static computation graph.
|
||||
|
||||
As a consequence, the resulting graph has a couple limitations:
|
||||
|
||||
* It does not record any control-flow, like if-statements or loops;
|
||||
* Does not handle nuances between `training` and `eval` mode;
|
||||
* Does not truly handle dynamic inputs
|
||||
|
||||
As an attempt to support the static tracing limitations, the exporter also supports TorchScript scripting
|
||||
(through {func}`torch.jit.script`), which adds support for data-dependent control-flow, for example. However, TorchScript
|
||||
itself is a subset of the Python language, so not all features in Python are supported, such as in-place operations.
|
||||
|
||||
{doc}`Learn more about the TorchScript-based ONNX Exporter <onnx_torchscript>`
|
||||
|
||||
## Contributing / Developing
|
||||
|
||||
The ONNX exporter is a community project and we welcome contributions. We follow the
|
||||
[PyTorch guidelines for contributions](https://github.com/pytorch/pytorch/blob/main/CONTRIBUTING.md), but you might
|
||||
also be interested in reading our [development wiki](https://github.com/pytorch/pytorch/wiki/PyTorch-ONNX-exporter).
|
||||
|
||||
```{eval-rst}
|
||||
.. toctree::
|
||||
:hidden:
|
||||
|
||||
onnx_dynamo
|
||||
onnx_ops
|
||||
onnx_verification
|
||||
onnx_dynamo_onnxruntime_backend
|
||||
onnx_torchscript
|
||||
```
|
||||
|
||||
<!-- This module needs to be documented. Adding here in the meantime
|
||||
for tracking purposes -->
|
||||
```{eval-rst}
|
||||
.. py:module:: torch.onnx.errors
|
||||
.. py:module:: torch.onnx.operators
|
||||
.. py:module:: torch.onnx.symbolic_caffe2
|
||||
.. py:module:: torch.onnx.symbolic_helper
|
||||
.. py:module:: torch.onnx.symbolic_opset10
|
||||
.. py:module:: torch.onnx.symbolic_opset11
|
||||
.. py:module:: torch.onnx.symbolic_opset12
|
||||
.. py:module:: torch.onnx.symbolic_opset13
|
||||
.. py:module:: torch.onnx.symbolic_opset14
|
||||
.. py:module:: torch.onnx.symbolic_opset15
|
||||
.. py:module:: torch.onnx.symbolic_opset16
|
||||
.. py:module:: torch.onnx.symbolic_opset17
|
||||
.. py:module:: torch.onnx.symbolic_opset18
|
||||
.. py:module:: torch.onnx.symbolic_opset19
|
||||
.. py:module:: torch.onnx.symbolic_opset20
|
||||
.. py:module:: torch.onnx.symbolic_opset7
|
||||
.. py:module:: torch.onnx.symbolic_opset8
|
||||
.. py:module:: torch.onnx.symbolic_opset9
|
||||
.. py:module:: torch.onnx.utils
|
||||
```
|
||||
|
|
@ -1,116 +0,0 @@
|
|||
torch.onnx
|
||||
==========
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
`Open Neural Network eXchange (ONNX) <https://onnx.ai/>`_ is an open standard
|
||||
format for representing machine learning models. The ``torch.onnx`` module captures the computation graph from a
|
||||
native PyTorch :class:`torch.nn.Module` model and converts it into an
|
||||
`ONNX graph <https://github.com/onnx/onnx/blob/main/docs/IR.md>`_.
|
||||
|
||||
The exported model can be consumed by any of the many
|
||||
`runtimes that support ONNX <https://onnx.ai/supported-tools.html#deployModel>`_, including
|
||||
Microsoft's `ONNX Runtime <https://www.onnxruntime.ai>`_.
|
||||
|
||||
**There are two flavors of ONNX exporter API that you can use, as listed below.**
|
||||
Both can be called through function :func:`torch.onnx.export`.
|
||||
Next example shows how to export a simple model.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import torch
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(MyModel, self).__init__()
|
||||
self.conv1 = torch.nn.Conv2d(1, 128, 5)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.relu(self.conv1(x))
|
||||
|
||||
input_tensor = torch.rand((1, 1, 128, 128), dtype=torch.float32)
|
||||
|
||||
model = MyModel()
|
||||
|
||||
torch.onnx.export(
|
||||
model, # model to export
|
||||
(input_tensor,), # inputs of the model,
|
||||
"my_model.onnx", # filename of the ONNX model
|
||||
input_names=["input"], # Rename inputs for the ONNX model
|
||||
dynamo=True # True or False to select the exporter to use
|
||||
)
|
||||
|
||||
Next sections introduces the two versions of the exporter.
|
||||
|
||||
TorchDynamo-based ONNX Exporter
|
||||
-------------------------------
|
||||
|
||||
*The TorchDynamo-based ONNX exporter is the newest (and Beta) exporter for PyTorch 2.1 and newer*
|
||||
|
||||
TorchDynamo engine is leveraged to hook into Python's frame evaluation API and dynamically rewrite its
|
||||
bytecode into an FX Graph. The resulting FX Graph is then polished before it is finally translated into an
|
||||
ONNX graph.
|
||||
|
||||
The main advantage of this approach is that the `FX graph <https://pytorch.org/docs/stable/fx.html>`_ is captured using
|
||||
bytecode analysis that preserves the dynamic nature of the model instead of using traditional static tracing techniques.
|
||||
|
||||
:doc:`Learn more about the TorchDynamo-based ONNX Exporter <onnx_dynamo>`
|
||||
|
||||
TorchScript-based ONNX Exporter
|
||||
-------------------------------
|
||||
|
||||
*The TorchScript-based ONNX exporter is available since PyTorch 1.2.0*
|
||||
|
||||
`TorchScript <https://pytorch.org/docs/stable/jit.html>`_ is leveraged to trace (through :func:`torch.jit.trace`)
|
||||
the model and capture a static computation graph.
|
||||
|
||||
As a consequence, the resulting graph has a couple limitations:
|
||||
|
||||
* It does not record any control-flow, like if-statements or loops;
|
||||
* Does not handle nuances between ``training`` and ``eval`` mode;
|
||||
* Does not truly handle dynamic inputs
|
||||
|
||||
As an attempt to support the static tracing limitations, the exporter also supports TorchScript scripting
|
||||
(through :func:`torch.jit.script`), which adds support for data-dependent control-flow, for example. However, TorchScript
|
||||
itself is a subset of the Python language, so not all features in Python are supported, such as in-place operations.
|
||||
|
||||
:doc:`Learn more about the TorchScript-based ONNX Exporter <onnx_torchscript>`
|
||||
|
||||
Contributing / Developing
|
||||
-------------------------
|
||||
|
||||
The ONNX exporter is a community project and we welcome contributions. We follow the
|
||||
`PyTorch guidelines for contributions <https://github.com/pytorch/pytorch/blob/main/CONTRIBUTING.md>`_, but you might
|
||||
also be interested in reading our `development wiki <https://github.com/pytorch/pytorch/wiki/PyTorch-ONNX-exporter>`_.
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
|
||||
onnx_dynamo
|
||||
onnx_ops
|
||||
onnx_verification
|
||||
onnx_dynamo_onnxruntime_backend
|
||||
onnx_torchscript
|
||||
|
||||
.. This module needs to be documented. Adding here in the meantime
|
||||
.. for tracking purposes
|
||||
.. py:module:: torch.onnx.errors
|
||||
.. py:module:: torch.onnx.operators
|
||||
.. py:module:: torch.onnx.symbolic_caffe2
|
||||
.. py:module:: torch.onnx.symbolic_helper
|
||||
.. py:module:: torch.onnx.symbolic_opset10
|
||||
.. py:module:: torch.onnx.symbolic_opset11
|
||||
.. py:module:: torch.onnx.symbolic_opset12
|
||||
.. py:module:: torch.onnx.symbolic_opset13
|
||||
.. py:module:: torch.onnx.symbolic_opset14
|
||||
.. py:module:: torch.onnx.symbolic_opset15
|
||||
.. py:module:: torch.onnx.symbolic_opset16
|
||||
.. py:module:: torch.onnx.symbolic_opset17
|
||||
.. py:module:: torch.onnx.symbolic_opset18
|
||||
.. py:module:: torch.onnx.symbolic_opset19
|
||||
.. py:module:: torch.onnx.symbolic_opset20
|
||||
.. py:module:: torch.onnx.symbolic_opset7
|
||||
.. py:module:: torch.onnx.symbolic_opset8
|
||||
.. py:module:: torch.onnx.symbolic_opset9
|
||||
.. py:module:: torch.onnx.utils
|
||||
|
|
@ -1,21 +1,27 @@
|
|||
torch.onnx.verification
|
||||
=======================
|
||||
|
||||
# torch.onnx.verification
|
||||
```{eval-rst}
|
||||
.. automodule:: torch.onnx.verification
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autofunction:: verify_onnx_program
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: VerificationInfo
|
||||
:members:
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autofunction:: verify
|
||||
```
|
||||
|
||||
Deprecated
|
||||
----------
|
||||
## Deprecated
|
||||
|
||||
The following classes and functions are deprecated.
|
||||
|
||||
.. Some deprecated members are not publicly shown
|
||||
<!-- Some deprecated members are not publicly shown -->
|
||||
```{eval-rst}
|
||||
.. py:class:: check_export_model_diff
|
||||
.. py:class:: GraphInfo
|
||||
.. py:class:: GraphInfoPrettyPrinter
|
||||
|
|
@ -24,3 +30,4 @@ The following classes and functions are deprecated.
|
|||
.. py:class:: VerificationOptions
|
||||
.. py:function:: find_mismatch
|
||||
.. py:function:: verify_aten_graph
|
||||
```
|
||||
756
docs/source/package.md
Normal file
756
docs/source/package.md
Normal file
|
|
@ -0,0 +1,756 @@
|
|||
```{eval-rst}
|
||||
.. automodule:: torch.package
|
||||
.. py:module:: torch.package.analyze
|
||||
|
||||
.. currentmodule:: torch.package
|
||||
```
|
||||
|
||||
# torch.package
|
||||
`torch.package` adds support for creating packages containing both artifacts and arbitrary
|
||||
PyTorch code. These packages can be saved, shared, used to load and execute models
|
||||
at a later date or on a different machine, and can even be deployed to production using
|
||||
`torch::deploy`.
|
||||
|
||||
This document contains tutorials, how-to guides, explanations, and an API reference that
|
||||
will help you learn more about `torch.package` and how to use it.
|
||||
|
||||
```{warning}
|
||||
This module depends on the `pickle` module which is not secure. Only unpackage data you trust.
|
||||
|
||||
It is possible to construct malicious pickle data which will **execute arbitrary code during unpickling**.
|
||||
Never unpackage data that could have come from an untrusted source, or that could have been tampered with.
|
||||
|
||||
For more information, review the [documentation](https://docs.python.org/3/library/pickle.html) for the `pickle` module.
|
||||
```
|
||||
|
||||
```{contents}
|
||||
:local:
|
||||
:depth: 2
|
||||
```
|
||||
|
||||
## Tutorials
|
||||
### Packaging your first model
|
||||
A tutorial that guides you through packaging and unpackaging a simple model is available
|
||||
[on Colab](https://colab.research.google.com/drive/1lFZkLyViGfXxB-m3jqlyTQuYToo3XLo-).
|
||||
After completing this exercise, you will be familiar with the basic API for creating and using
|
||||
Torch packages.
|
||||
|
||||
## How do I...
|
||||
|
||||
### See what is inside a package?
|
||||
|
||||
#### Treat the package like a ZIP archive
|
||||
|
||||
The container format for a `torch.package` is ZIP, so any tools that work with standard ZIP files should
|
||||
work for exploring the contents. Some common ways to interact with ZIP files:
|
||||
|
||||
* `unzip my_package.pt` will unzip the `torch.package` archive to disk, where you can freely inspect its contents.
|
||||
|
||||
```
|
||||
$ unzip my_package.pt && tree my_package
|
||||
my_package
|
||||
├── .data
|
||||
│ ├── 94304870911616.storage
|
||||
│ ├── 94304900784016.storage
|
||||
│ ├── extern_modules
|
||||
│ └── version
|
||||
├── models
|
||||
│ └── model_1.pkl
|
||||
└── torchvision
|
||||
└── models
|
||||
├── resnet.py
|
||||
└── utils.py
|
||||
~ cd my_package && cat torchvision/models/resnet.py
|
||||
...
|
||||
```
|
||||
|
||||
* The Python `zipfile` module provides a standard way to read and write ZIP archive contents.
|
||||
|
||||
```python
|
||||
from zipfile import ZipFile
|
||||
with ZipFile("my_package.pt") as myzip:
|
||||
file_bytes = myzip.read("torchvision/models/resnet.py")
|
||||
# edit file_bytes in some way
|
||||
myzip.writestr("torchvision/models/resnet.py", new_file_bytes)
|
||||
```
|
||||
|
||||
* vim has the ability to natively read ZIP archives. You can even edit files and :`write` them back into the archive!
|
||||
|
||||
```vim
|
||||
# add this to your .vimrc to treat `*.pt` files as zip files
|
||||
au BufReadCmd *.pt call zip#Browse(expand("<amatch>"))
|
||||
|
||||
~ vi my_package.pt
|
||||
```
|
||||
|
||||
#### Use the `file_structure()` API
|
||||
{class}`PackageImporter` provides a `file_structure()` method, which will return a printable
|
||||
and queryable {class}`Directory` object. The {class}`Directory` object is a simple directory structure that you can use to explore the
|
||||
current contents of a `torch.package`.
|
||||
|
||||
The {class}`Directory` object itself is directly printable and will print out a file tree representation. To filter what is returned,
|
||||
use the glob-style `include` and `exclude` filtering arguments.
|
||||
|
||||
```python
|
||||
with PackageExporter('my_package.pt') as pe:
|
||||
pe.save_pickle('models', 'model_1.pkl', mod)
|
||||
|
||||
importer = PackageImporter('my_package.pt')
|
||||
# can limit printed items with include/exclude args
|
||||
print(importer.file_structure(include=["**/utils.py", "**/*.pkl"], exclude="**/*.storage"))
|
||||
print(importer.file_structure()) # will print out all files
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
# filtered with glob pattern:
|
||||
# include=["**/utils.py", "**/*.pkl"], exclude="**/*.storage"
|
||||
─── my_package.pt
|
||||
├── models
|
||||
│ └── model_1.pkl
|
||||
└── torchvision
|
||||
└── models
|
||||
└── utils.py
|
||||
|
||||
# all files
|
||||
─── my_package.pt
|
||||
├── .data
|
||||
│ ├── 94304870911616.storage
|
||||
│ ├── 94304900784016.storage
|
||||
│ ├── extern_modules
|
||||
│ └── version
|
||||
├── models
|
||||
│ └── model_1.pkl
|
||||
└── torchvision
|
||||
└── models
|
||||
├── resnet.py
|
||||
└── utils.py
|
||||
```
|
||||
|
||||
You can also query {class}`Directory` objects with the `has_file()` method.
|
||||
|
||||
```python
|
||||
importer_file_structure = importer.file_structure()
|
||||
found: bool = importer_file_structure.has_file("package_a/subpackage.py")
|
||||
```
|
||||
|
||||
### See why a given module was included as a dependency?
|
||||
|
||||
Say there is a given module `foo`, and you want to know why your {class}`PackageExporter` is pulling in `foo` as a dependency.
|
||||
|
||||
{meth}`PackageExporter.get_rdeps` will return all modules that directly depend on `foo`.
|
||||
|
||||
If you would like to see how a given module `src` depends on `foo`, the {meth}`PackageExporter.all_paths` method will
|
||||
return a DOT-formatted graph showing all the dependency paths between `src` and `foo`.
|
||||
|
||||
If you would just like to see the whole dependency graph of your :class:`PackageExporter`, you can use {meth}`PackageExporter.dependency_graph_string`.
|
||||
|
||||
|
||||
### Include arbitrary resources with my package and access them later?
|
||||
{class}`PackageExporter` exposes three methods, `save_pickle`, `save_text` and `save_binary` that allow you to save
|
||||
Python objects, text, and binary data to a package.
|
||||
|
||||
```python
|
||||
with torch.PackageExporter("package.pt") as exporter:
|
||||
# Pickles the object and saves to `my_resources/tensor.pkl` in the archive.
|
||||
exporter.save_pickle("my_resources", "tensor.pkl", torch.randn(4))
|
||||
exporter.save_text("config_stuff", "words.txt", "a sample string")
|
||||
exporter.save_binary("raw_data", "binary", my_bytes)
|
||||
|
||||
```
|
||||
{class}`PackageImporter` exposes complementary methods named `load_pickle`, `load_text` and `load_binary` that allow you to load
|
||||
Python objects, text and binary data from a package.
|
||||
|
||||
```python
|
||||
importer = torch.PackageImporter("package.pt")
|
||||
my_tensor = importer.load_pickle("my_resources", "tensor.pkl")
|
||||
text = importer.load_text("config_stuff", "words.txt")
|
||||
binary = importer.load_binary("raw_data", "binary")
|
||||
```
|
||||
|
||||
### Customize how a class is packaged?
|
||||
`torch.package` allows for the customization of how classes are packaged. This behavior is accessed through defining the method
|
||||
`__reduce_package__` on a class and by defining a corresponding de-packaging function. This is similar to defining `__reduce__` for
|
||||
Python’s normal pickling process.
|
||||
|
||||
Steps:
|
||||
|
||||
1. Define the method `__reduce_package__(self, exporter: PackageExporter)` on the target class. This method should do the work to save the class instance inside of the package, and should return a tuple of the corresponding de-packaging function with the arguments needed to invoke the de-packaging function. This method is called by the `PackageExporter` when it encounters an instance of the target class.
|
||||
2. Define a de-packaging function for the class. This de-packaging function should do the work to reconstruct and return an instance of the class. The function signature’s first parameter should be a `PackageImporter` instance, and the rest of the parameters are user defined.
|
||||
|
||||
|
||||
```python
|
||||
# foo.py [Example of customizing how class Foo is packaged]
|
||||
from torch.package import PackageExporter, PackageImporter
|
||||
import time
|
||||
|
||||
|
||||
class Foo:
|
||||
def __init__(self, my_string: str):
|
||||
super().__init__()
|
||||
self.my_string = my_string
|
||||
self.time_imported = 0
|
||||
self.time_exported = 0
|
||||
|
||||
def __reduce_package__(self, exporter: PackageExporter):
|
||||
"""
|
||||
Called by ``torch.package.PackageExporter``'s Pickler's ``persistent_id`` when
|
||||
saving an instance of this object. This method should do the work to save this
|
||||
object inside of the ``torch.package`` archive.
|
||||
|
||||
Returns function w/ arguments to load the object from a
|
||||
``torch.package.PackageImporter``'s Pickler's ``persistent_load`` function.
|
||||
"""
|
||||
|
||||
# use this pattern to ensure no naming conflicts with normal dependencies,
|
||||
# anything saved under this module name shouldn't conflict with other
|
||||
# items in the package
|
||||
generated_module_name = f"foo-generated._{exporter.get_unique_id()}"
|
||||
exporter.save_text(
|
||||
generated_module_name,
|
||||
"foo.txt",
|
||||
self.my_string + ", with exporter modification!",
|
||||
)
|
||||
time_exported = time.clock_gettime(1)
|
||||
|
||||
# returns de-packaging function w/ arguments to invoke with
|
||||
return (unpackage_foo, (generated_module_name, time_exported,))
|
||||
|
||||
|
||||
def unpackage_foo(
|
||||
importer: PackageImporter, generated_module_name: str, time_exported: float
|
||||
) -> Foo:
|
||||
"""
|
||||
Called by ``torch.package.PackageImporter``'s Pickler's ``persistent_load`` function
|
||||
when depickling a Foo object.
|
||||
Performs work of loading and returning a Foo instance from a ``torch.package`` archive.
|
||||
"""
|
||||
time_imported = time.clock_gettime(1)
|
||||
foo = Foo(importer.load_text(generated_module_name, "foo.txt"))
|
||||
foo.time_imported = time_imported
|
||||
foo.time_exported = time_exported
|
||||
return foo
|
||||
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
# example of saving instances of class Foo
|
||||
|
||||
import torch
|
||||
from torch.package import PackageImporter, PackageExporter
|
||||
import foo
|
||||
|
||||
foo_1 = foo.Foo("foo_1 initial string")
|
||||
foo_2 = foo.Foo("foo_2 initial string")
|
||||
with PackageExporter('foo_package.pt') as pe:
|
||||
# save as normal, no extra work necessary
|
||||
pe.save_pickle('foo_collection', 'foo1.pkl', foo_1)
|
||||
pe.save_pickle('foo_collection', 'foo2.pkl', foo_2)
|
||||
|
||||
pi = PackageImporter('foo_package.pt')
|
||||
print(pi.file_structure())
|
||||
imported_foo = pi.load_pickle('foo_collection', 'foo1.pkl')
|
||||
print(f"foo_1 string: '{imported_foo.my_string}'")
|
||||
print(f"foo_1 export time: {imported_foo.time_exported}")
|
||||
print(f"foo_1 import time: {imported_foo.time_imported}")
|
||||
```
|
||||
|
||||
```
|
||||
# output of running above script
|
||||
─── foo_package
|
||||
├── foo-generated
|
||||
│ ├── _0
|
||||
│ │ └── foo.txt
|
||||
│ └── _1
|
||||
│ └── foo.txt
|
||||
├── foo_collection
|
||||
│ ├── foo1.pkl
|
||||
│ └── foo2.pkl
|
||||
└── foo.py
|
||||
|
||||
foo_1 string: 'foo_1 initial string, with reduction modification!'
|
||||
foo_1 export time: 9857706.650140837
|
||||
foo_1 import time: 9857706.652698385
|
||||
```
|
||||
|
||||
### Test in my source code whether or not it is executing inside a package?
|
||||
|
||||
A {class}`PackageImporter` will add the attribute `__torch_package__` to every module that it initializes. Your code can check for the
|
||||
presence of this attribute to determine whether it is executing in a packaged context or not.
|
||||
|
||||
```python
|
||||
# In foo/bar.py:
|
||||
|
||||
if "__torch_package__" in dir(): # true if the code is being loaded from a package
|
||||
def is_in_package():
|
||||
return True
|
||||
|
||||
UserException = Exception
|
||||
else:
|
||||
def is_in_package():
|
||||
return False
|
||||
|
||||
UserException = UnpackageableException
|
||||
```
|
||||
|
||||
Now, the code will behave differently depending on whether it’s imported normally through your Python environment or imported from a
|
||||
`torch.package`.
|
||||
|
||||
```python
|
||||
from foo.bar import is_in_package
|
||||
|
||||
print(is_in_package()) # False
|
||||
|
||||
loaded_module = PackageImporter(my_package).import_module("foo.bar")
|
||||
loaded_module.is_in_package() # True
|
||||
```
|
||||
|
||||
**Warning**: in general, it’s bad practice to have code that behaves differently depending on whether it’s packaged or not. This can lead to
|
||||
hard-to-debug issues that are sensitive to how you imported your code. If your package is intended to be heavily used, consider restructuring
|
||||
your code so that it behaves the same way no matter how it was loaded.
|
||||
|
||||
|
||||
### Patch code into a package?
|
||||
{class}`PackageExporter` offers a `save_source_string()` method that allows one to save arbitrary Python source code to a module of your choosing.
|
||||
```python
|
||||
with PackageExporter(f) as exporter:
|
||||
# Save the my_module.foo available in your current Python environment.
|
||||
exporter.save_module("my_module.foo")
|
||||
|
||||
# This saves the provided string to my_module/foo.py in the package archive.
|
||||
# It will override the my_module.foo that was previously saved.
|
||||
exporter.save_source_string("my_module.foo", textwrap.dedent(
|
||||
"""\
|
||||
def my_function():
|
||||
print('hello world')
|
||||
"""
|
||||
))
|
||||
|
||||
# If you want to treat my_module.bar as a package
|
||||
# (e.g. save to `my_module/bar/__init__.py` instead of `my_module/bar.py)
|
||||
# pass is_package=True,
|
||||
exporter.save_source_string("my_module.bar",
|
||||
"def foo(): print('hello')\n",
|
||||
is_package=True)
|
||||
|
||||
importer = PackageImporter(f)
|
||||
importer.import_module("my_module.foo").my_function() # prints 'hello world'
|
||||
```
|
||||
|
||||
### Access package contents from packaged code?
|
||||
{class}`PackageImporter` implements the
|
||||
[`importlib.resources`](https://docs.python.org/3/library/importlib.html#module-importlib.resources)
|
||||
API for accessing resources from inside a package.
|
||||
|
||||
```python
|
||||
with PackageExporter(f) as exporter:
|
||||
# saves text to my_resource/a.txt in the archive
|
||||
exporter.save_text("my_resource", "a.txt", "hello world!")
|
||||
# saves the tensor to my_pickle/obj.pkl
|
||||
exporter.save_pickle("my_pickle", "obj.pkl", torch.ones(2, 2))
|
||||
|
||||
# see below for module contents
|
||||
exporter.save_module("foo")
|
||||
exporter.save_module("bar")
|
||||
```
|
||||
|
||||
The `importlib.resources` API allows access to resources from within packaged code.
|
||||
|
||||
|
||||
```python
|
||||
# foo.py:
|
||||
import importlib.resources
|
||||
import my_resource
|
||||
|
||||
# returns "hello world!"
|
||||
def get_my_resource():
|
||||
return importlib.resources.read_text(my_resource, "a.txt")
|
||||
```
|
||||
|
||||
Using `importlib.resources` is the recommended way to access package contents from within packaged code, since it complies
|
||||
with the Python standard. However, it is also possible to access the parent :class:`PackageImporter` instance itself from within
|
||||
packaged code.
|
||||
|
||||
```python
|
||||
# bar.py:
|
||||
import torch_package_importer # this is the PackageImporter that imported this module.
|
||||
|
||||
# Prints "hello world!", equivalent to importlib.resources.read_text
|
||||
def get_my_resource():
|
||||
return torch_package_importer.load_text("my_resource", "a.txt")
|
||||
|
||||
# You also do things that the importlib.resources API does not support, like loading
|
||||
# a pickled object from the package.
|
||||
def get_my_pickle():
|
||||
return torch_package_importer.load_pickle("my_pickle", "obj.pkl")
|
||||
```
|
||||
|
||||
### Distinguish between packaged code and non-packaged code?
|
||||
To tell if an object’s code is from a `torch.package`, use the `torch.package.is_from_package()` function.
|
||||
Note: if an object is from a package but its definition is from a module marked `extern` or from `stdlib`,
|
||||
this check will return `False`.
|
||||
|
||||
```python
|
||||
importer = PackageImporter(f)
|
||||
mod = importer.import_module('foo')
|
||||
obj = importer.load_pickle('model', 'model.pkl')
|
||||
txt = importer.load_text('text', 'my_test.txt')
|
||||
|
||||
assert is_from_package(mod)
|
||||
assert is_from_package(obj)
|
||||
assert not is_from_package(txt) # str is from stdlib, so this will return False
|
||||
```
|
||||
|
||||
### Re-export an imported object?
|
||||
To re-export an object that was previously imported by a {class}`PackageImporter`, you must make the new {class}`PackageExporter`
|
||||
aware of the original {class}`PackageImporter` so that it can find source code for your object’s dependencies.
|
||||
|
||||
```python
|
||||
importer = PackageImporter(f)
|
||||
obj = importer.load_pickle("model", "model.pkl")
|
||||
|
||||
# re-export obj in a new package
|
||||
with PackageExporter(f2, importer=(importer, sys_importer)) as exporter:
|
||||
exporter.save_pickle("model", "model.pkl", obj)
|
||||
```
|
||||
|
||||
### Package a TorchScript module?
|
||||
To package a TorchScript model, use the same `save_pickle` and `load_pickle` APIs as you would with any other object.
|
||||
Saving TorchScript objects that are attributes or submodules is supported as well with no extra work.
|
||||
|
||||
```python
|
||||
# save TorchScript just like any other object
|
||||
with PackageExporter(file_name) as e:
|
||||
e.save_pickle("res", "script_model.pkl", scripted_model)
|
||||
e.save_pickle("res", "mixed_model.pkl", python_model_with_scripted_submodule)
|
||||
# load as normal
|
||||
importer = PackageImporter(file_name)
|
||||
loaded_script = importer.load_pickle("res", "script_model.pkl")
|
||||
loaded_mixed = importer.load_pickle("res", "mixed_model.pkl"
|
||||
```
|
||||
|
||||
## Explanation
|
||||
|
||||
### `torch.package` Format Overview
|
||||
A `torch.package` file is a ZIP archive which conventionally uses the `.pt` extension. Inside the ZIP archive, there are two kinds of files:
|
||||
|
||||
* Framework files, which are placed in the `.data/`.
|
||||
* User files, which is everything else.
|
||||
|
||||
As an example, this is what a fully packaged ResNet model from `torchvision` looks like:
|
||||
|
||||
```
|
||||
resnet
|
||||
├── .data # All framework-specific data is stored here.
|
||||
│ │ # It's named to avoid conflicts with user-serialized code.
|
||||
│ ├── 94286146172688.storage # tensor data
|
||||
│ ├── 94286146172784.storage
|
||||
│ ├── extern_modules # text file with names of extern modules (e.g. 'torch')
|
||||
│ ├── version # version metadata
|
||||
│ ├── ...
|
||||
├── model # the pickled model
|
||||
│ └── model.pkl
|
||||
└── torchvision # all code dependencies are captured as source files
|
||||
└── models
|
||||
├── resnet.py
|
||||
└── utils.py
|
||||
```
|
||||
|
||||
#### Framework files
|
||||
The `.data/` directory is owned by torch.package, and its contents are considered to be a private implementation detail.
|
||||
The `torch.package` format makes no guarantees about the contents of `.data/`, but any changes made will be backward compatible
|
||||
(that is, newer version of PyTorch will always be able to load older `torch.packages`).
|
||||
|
||||
Currently, the `.data/` directory contains the following items:
|
||||
|
||||
* `version`: a version number for the serialized format, so that the `torch.package` import infrastructures knows how to load this package.
|
||||
* `extern_modules`: a list of modules that are considered `extern`. `extern` modules will be imported using the loading environment’s system importer.
|
||||
* `*.storage`: serialized tensor data.
|
||||
|
||||
```
|
||||
.data
|
||||
├── 94286146172688.storage
|
||||
├── 94286146172784.storage
|
||||
├── extern_modules
|
||||
├── version
|
||||
├── ...
|
||||
```
|
||||
|
||||
#### User files
|
||||
All other files in the archive were put there by a user. The layout is identical to a Python
|
||||
[regular package](https://docs.python.org/3/reference/import.html#regular-packages). For a deeper dive in how Python packaging works,
|
||||
please consult [this essay](https://www.python.org/doc/essays/packages/) (it’s slightly out of date, so double-check implementation details
|
||||
with the [Python reference documentation](https://docs.python.org/3/library/importlib.html).
|
||||
|
||||
```
|
||||
<package root>
|
||||
├── model # the pickled model
|
||||
│ └── model.pkl
|
||||
├── another_package
|
||||
│ ├── __init__.py
|
||||
│ ├── foo.txt # a resource file , see importlib.resources
|
||||
│ └── ...
|
||||
└── torchvision
|
||||
└── models
|
||||
├── resnet.py # torchvision.models.resnet
|
||||
└── utils.py # torchvision.models.utils
|
||||
```
|
||||
|
||||
### How `torch.package` finds your code's dependencies
|
||||
#### Analyzing an object's dependencies
|
||||
When you issue a `save_pickle(obj, ...)` call, {class}`PackageExporter` will pickle the object normally. Then, it uses the
|
||||
`pickletools` standard library module to parse the pickle bytecode.
|
||||
|
||||
In a pickle, an object is saved along with a `GLOBAL` opcode that describes where to find the implementation of the object’s type, like:
|
||||
|
||||
```
|
||||
GLOBAL 'torchvision.models.resnet Resnet`
|
||||
```
|
||||
|
||||
The dependency resolver will gather up all `GLOBAL` ops and mark them as dependencies of your pickled object.
|
||||
For more information about pickling and the pickle format, please consult [the Python docs](https://docs.python.org/3/library/pickle.html).
|
||||
|
||||
#### Analyzing a module's dependencies
|
||||
When a Python module is identified as a dependency, `torch.package` walks the module’s python AST representation and looks for import statements with
|
||||
full support for the standard forms: `from x import y`, `import z`, `from w import v as u`, etc. When one of these import statements are
|
||||
encountered, `torch.package` registers the imported modules as dependencies that are then themselves parsed in the same AST walking way.
|
||||
|
||||
**Note**: AST parsing has limited support for the `__import__(...)` syntax and does not support `importlib.import_module` calls. In general, you should
|
||||
not expect dynamic imports to be detected by `torch.package`.
|
||||
|
||||
|
||||
### Dependency Management
|
||||
`torch.package` automatically finds the Python modules that your code and objects depend on. This process is called dependency resolution.
|
||||
For each module that the dependency resolver finds, you must specify an *action* to take.
|
||||
|
||||
The allowed actions are:
|
||||
|
||||
* `intern`: put this module into the package.
|
||||
* `extern`: declare this module as an external dependency of the package.
|
||||
* `mock`: stub out this module.
|
||||
* `deny`: depending on this module will raise an error during package export.
|
||||
|
||||
Finally, there is one more important action that is not technically part of `torch.package`:
|
||||
|
||||
* Refactoring: remove or change the dependencies in your code.
|
||||
|
||||
Note that actions are only defined on entire Python modules. There is no way to package “just” a function or class from a module and leave the rest out.
|
||||
This is by design. Python does not offer clean boundaries between objects defined in a module. The only defined unit of dependency organization is a
|
||||
module, so that’s what `torch.package` uses.
|
||||
|
||||
Actions are applied to modules using patterns. Patterns can either be module names (`"foo.bar"`) or globs (like `"foo.**"`). You associate a pattern
|
||||
with an action using methods on {class}`PackageExporter`, e.g.
|
||||
|
||||
```python
|
||||
my_exporter.intern("torchvision.**")
|
||||
my_exporter.extern("numpy")
|
||||
```
|
||||
|
||||
If a module matches a pattern, the corresponding action is applied to it. For a given module, patterns will be checked in the order that they were defined,
|
||||
and the first action will be taken.
|
||||
|
||||
|
||||
#### `intern`
|
||||
If a module is `intern`-ed, it will be placed into the package.
|
||||
|
||||
This action is your model code, or any related code you want to package. For example, if you are trying to package a ResNet from `torchvision`,
|
||||
you will need to `intern` the module torchvision.models.resnet.
|
||||
|
||||
On package import, when your packaged code tries to import an `intern`-ed module, PackageImporter will look inside your package for that module.
|
||||
If it can’t find that module, an error will be raised. This ensures that each {class}`PackageImporter` is isolated from the loading environment—even
|
||||
if you have `my_interned_module` available in both your package and the loading environment, {class}`PackageImporter` will only use the version in your
|
||||
package.
|
||||
|
||||
**Note**: Only Python source modules can be `intern`-ed. Other kinds of modules, like C extension modules and bytecode modules, will raise an error if
|
||||
you attempt to `intern` them. These kinds of modules need to be `mock`-ed or `extern`-ed.
|
||||
|
||||
|
||||
#### `extern`
|
||||
If a module is `extern`-ed, it will not be packaged. Instead, it will be added to a list of external dependencies for this package. You can find this
|
||||
list on `package_exporter.extern_modules`.
|
||||
|
||||
On package import, when the packaged code tries to import an `extern`-ed module, {class}`PackageImporter` will use the default Python importer to find
|
||||
that module, as if you did `importlib.import_module("my_externed_module")`. If it can’t find that module, an error will be raised.
|
||||
|
||||
In this way, you can depend on third-party libraries like `numpy` and `scipy` from within your package without having to package them too.
|
||||
|
||||
**Warning**: If any external library changes in a backwards-incompatible way, your package may fail to load. If you need long-term reproducibility
|
||||
for your package, try to limit your use of `extern`.
|
||||
|
||||
|
||||
#### `mock`
|
||||
If a module is `mock`-ed, it will not be packaged. Instead a stub module will be packaged in its place. The stub module will allow you to retrieve
|
||||
objects from it (so that `from my_mocked_module import foo` will not error), but any use of that object will raise a `NotImplementedError`.
|
||||
|
||||
`mock` should be used for code that you “know” will not be needed in the loaded package, but you still want available for use in non-packaged contents.
|
||||
For example, initialization/configuration code, or code only used for debugging/training.
|
||||
|
||||
**Warning**: In general, `mock` should be used as a last resort. It introduces behavioral differences between packaged code and non-packaged code,
|
||||
which may lead to later confusion. Prefer instead to refactor your code to remove unwanted dependencies.
|
||||
|
||||
|
||||
#### Refactoring
|
||||
The best way to manage dependencies is to not have dependencies at all! Often, code can be refactored to remove unnecessary dependencies. Here are some
|
||||
guidelines for writing code with clean dependencies (which are also generally good practices!):
|
||||
|
||||
**Include only what you use**. Do not leave unused imports in your code. The dependency resolver is not smart enough to tell that they are indeed unused,
|
||||
and will try to process them.
|
||||
|
||||
**Qualify your imports**. For example, instead of writing import foo and later using `foo.bar.baz`, prefer to write `from foo.bar import baz`. This more
|
||||
precisely specifies your real dependency (`foo.bar`) and lets the dependency resolver know you don’t need all of `foo`.
|
||||
|
||||
**Split up large files with unrelated functionality into smaller ones**. If your `utils` module contains a hodge-podge of unrelated functionality, any module
|
||||
that depends on `utils` will need to pull in lots of unrelated dependencies, even if you only needed a small part of it. Prefer instead to define
|
||||
single-purpose modules that can be packaged independently of one another.
|
||||
|
||||
|
||||
#### Patterns
|
||||
Patterns allow you to specify groups of modules with a convenient syntax. The syntax and behavior of patterns follows the Bazel/Buck
|
||||
[glob()](https://docs.bazel.build/versions/master/be/functions.html#glob).
|
||||
|
||||
A module that we are trying to match against a pattern is called a candidate. A candidate is composed of a list of segments separated by a
|
||||
separator string, e.g. `foo.bar.baz`.
|
||||
|
||||
A pattern contains one or more segments. Segments can be:
|
||||
|
||||
* A literal string (e.g. `foo`), which matches exactly.
|
||||
* A string containing a wildcard (e.g. `torch`, or `foo*baz*`). The wildcard matches any string, including the empty string.
|
||||
* A double wildcard (`**`). This matches against zero or more complete segments.
|
||||
|
||||
Examples:
|
||||
|
||||
* `torch.**`: matches `torch` and all its submodules, e.g. `torch.nn` and `torch.nn.functional`.
|
||||
* `torch.*`: matches `torch.nn` or `torch.functional`, but not `torch.nn.functional` or `torch`
|
||||
* `torch*.**`: matches `torch`, `torchvision`, and all of their submodules
|
||||
|
||||
When specifying actions, you can pass multiple patterns, e.g.
|
||||
|
||||
```python
|
||||
exporter.intern(["torchvision.models.**", "torchvision.utils.**"])
|
||||
```
|
||||
|
||||
A module will match against this action if it matches any of the patterns.
|
||||
|
||||
You can also specify patterns to exclude, e.g.
|
||||
|
||||
```python
|
||||
exporter.mock("**", exclude=["torchvision.**"])
|
||||
```
|
||||
|
||||
|
||||
A module will not match against this action if it matches any of the exclude patterns. In this example, we are mocking all modules except
|
||||
`torchvision` and its submodules.
|
||||
|
||||
When a module could potentially match against multiple actions, the first action defined will be taken.
|
||||
|
||||
|
||||
### `torch.package` sharp edges
|
||||
#### Avoid global state in your modules
|
||||
Python makes it really easy to bind objects and run code at module-level scope. This is generally fine—after all, functions and classes are bound to
|
||||
names this way. However, things become more complicated when you define an object at module scope with the intention of mutating it, introducing mutable
|
||||
global state.
|
||||
|
||||
Mutable global state is quite useful—it can reduce boilerplate, allow for open registration into tables, etc. But unless employed very carefully, it can
|
||||
cause complications when used with `torch.package`.
|
||||
|
||||
Every {class}`PackageImporter` creates an independent environment for its contents. This is nice because it means we load multiple packages and ensure
|
||||
they are isolated from each other, but when modules are written in a way that assumes shared mutable global state, this behavior can create hard-to-debug
|
||||
errors.
|
||||
|
||||
#### Types are not shared between packages and the loading environment
|
||||
Any class that you import from a {class}`PackageImporter` will be a version of the class specific to that importer. For example:
|
||||
|
||||
|
||||
```python
|
||||
from foo import MyClass
|
||||
|
||||
my_class_instance = MyClass()
|
||||
|
||||
with PackageExporter(f) as exporter:
|
||||
exporter.save_module("foo")
|
||||
|
||||
importer = PackageImporter(f)
|
||||
imported_MyClass = importer.import_module("foo").MyClass
|
||||
|
||||
assert isinstance(my_class_instance, MyClass) # works
|
||||
assert isinstance(my_class_instance, imported_MyClass) # ERROR!
|
||||
```
|
||||
|
||||
In this example, `MyClass` and `imported_MyClass` are *not the same type*. In this specific example, `MyClass` and `imported_MyClass` have exactly the
|
||||
same implementation, so you might think it’s okay to consider them the same class. But consider the situation where `imported_MyClass` is coming from an
|
||||
older package with an entirely different implementation of `MyClass` — in that case, it’s unsafe to consider them the same class.
|
||||
|
||||
Under the hood, each importer has a prefix that allows it to uniquely identify classes:
|
||||
|
||||
```python
|
||||
print(MyClass.__name__) # prints "foo.MyClass"
|
||||
print(imported_MyClass.__name__) # prints <torch_package_0>.foo.MyClass
|
||||
```
|
||||
|
||||
That means you should not expect `isinstance` checks to work when one of the arguments is from a package and the other is not. If you need this
|
||||
functionality, consider the following options:
|
||||
|
||||
* Doing duck typing (just using the class instead of explicitly checking that it is of a given type).
|
||||
* Make the typing relationship an explicit part of the class contract. For example, you can add an attribute tag `self.handler = "handle_me_this_way"` and have client code check for the value of `handler` instead of checking the type directly.
|
||||
|
||||
|
||||
### How `torch.package` keeps packages isolated from each other
|
||||
Each {class}`PackageImporter` instance creates an independent, isolated environment for its modules and objects. Modules in a package can only import
|
||||
other packaged modules, or modules marked `extern`. If you use multiple {class}`PackageImporter` instances to load a single package, you will get
|
||||
multiple independent environments that do not interact.
|
||||
|
||||
This is achieved by extending Python’s import infrastructure with a custom importer. {class}`PackageImporter` provides the same core API as the
|
||||
`importlib` importer; namely, it implements the `import_module` and `__import__` methods.
|
||||
|
||||
When you invoke {meth}`PackageImporter.import_module`, {class}`PackageImporter` will construct and return a new module, much as the system importer does.
|
||||
However, {class}`PackageImporter` patches the returned module to use `self` (i.e. that {class}`PackageImporter` instance) to fulfill future import
|
||||
requests by looking in the package rather than searching the user’s Python environment.
|
||||
|
||||
#### Mangling
|
||||
To avoid confusion (“is this `foo.bar` object the one from my package, or the one from my Python environment?”), {class}`PackageImporter` mangles the
|
||||
`__name__` and `__file__` of all imported modules, by adding a *mangle prefix* to them.
|
||||
|
||||
For `__name__`, a name like `torchvision.models.resnet18` becomes `<torch_package_0>.torchvision.models.resnet18`.
|
||||
|
||||
For `__file__`, a name like `torchvision/models/resnet18.py` becomes `<torch_package_0>.torchvision/modules/resnet18.py`.
|
||||
|
||||
Name mangling helps avoid inadvertent punning of module names between different packages, and helps you debug by making stack traces and print
|
||||
statements more clearly show whether they are referring to packaged code or not. For developer-facing details about mangling, consult
|
||||
`mangling.md` in `torch/package/`.
|
||||
|
||||
|
||||
## API Reference
|
||||
```{eval-rst}
|
||||
.. autoclass:: torch.package.PackagingError
|
||||
|
||||
.. autoclass:: torch.package.EmptyMatchError
|
||||
|
||||
.. autoclass:: torch.package.PackageExporter
|
||||
:members:
|
||||
|
||||
.. automethod:: __init__
|
||||
|
||||
.. autoclass:: torch.package.PackageImporter
|
||||
:members:
|
||||
|
||||
.. automethod:: __init__
|
||||
|
||||
.. autoclass:: torch.package.Directory
|
||||
:members:
|
||||
```
|
||||
|
||||
<!-- This module needs to be documented. Adding here in the meantime
|
||||
for tracking purposes -->
|
||||
```{eval-rst}
|
||||
.. py:module:: torch.package.analyze.find_first_use_of_broken_modules
|
||||
.. py:module:: torch.package.analyze.is_from_package
|
||||
.. py:module:: torch.package.analyze.trace_dependencies
|
||||
.. py:module:: torch.package.file_structure_representation
|
||||
.. py:module:: torch.package.find_file_dependencies
|
||||
.. py:module:: torch.package.glob_group
|
||||
.. py:module:: torch.package.importer
|
||||
.. py:module:: torch.package.package_exporter
|
||||
.. py:module:: torch.package.package_importer
|
||||
```
|
||||
|
|
@ -1,832 +0,0 @@
|
|||
.. automodule:: torch.package
|
||||
.. py:module:: torch.package.analyze
|
||||
|
||||
.. currentmodule:: torch.package
|
||||
|
||||
torch.package
|
||||
=============
|
||||
``torch.package`` adds support for creating packages containing both artifacts and arbitrary
|
||||
PyTorch code. These packages can be saved, shared, used to load and execute models
|
||||
at a later date or on a different machine, and can even be deployed to production using
|
||||
``torch::deploy``.
|
||||
|
||||
This document contains tutorials, how-to guides, explanations, and an API reference that
|
||||
will help you learn more about ``torch.package`` and how to use it.
|
||||
|
||||
|
||||
.. warning::
|
||||
|
||||
This module depends on the ``pickle`` module which is not secure. Only unpackage data you trust.
|
||||
|
||||
It is possible to construct malicious pickle data which will **execute arbitrary code during unpickling**.
|
||||
Never unpackage data that could have come from an untrusted source, or that could have been tampered with.
|
||||
|
||||
For more information, review the `documentation <https://docs.python.org/3/library/pickle.html>`_ for the ``pickle`` module.
|
||||
|
||||
|
||||
.. contents:: :local:
|
||||
:depth: 2
|
||||
|
||||
|
||||
Tutorials
|
||||
---------
|
||||
Packaging your first model
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
A tutorial that guides you through packaging and unpackaging a simple model is available
|
||||
`on Colab <https://colab.research.google.com/drive/1lFZkLyViGfXxB-m3jqlyTQuYToo3XLo->`_.
|
||||
After completing this exercise, you will be familiar with the basic API for creating and using
|
||||
Torch packages.
|
||||
|
||||
How do I...
|
||||
-----------
|
||||
See what is inside a package?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Treat the package like a ZIP archive
|
||||
""""""""""""""""""""""""""""""""""""
|
||||
The container format for a ``torch.package`` is ZIP, so any tools that work with standard ZIP files should
|
||||
work for exploring the contents. Some common ways to interact with ZIP files:
|
||||
|
||||
* ``unzip my_package.pt`` will unzip the ``torch.package`` archive to disk, where you can freely inspect its contents.
|
||||
|
||||
|
||||
::
|
||||
|
||||
$ unzip my_package.pt && tree my_package
|
||||
my_package
|
||||
├── .data
|
||||
│ ├── 94304870911616.storage
|
||||
│ ├── 94304900784016.storage
|
||||
│ ├── extern_modules
|
||||
│ └── version
|
||||
├── models
|
||||
│ └── model_1.pkl
|
||||
└── torchvision
|
||||
└── models
|
||||
├── resnet.py
|
||||
└── utils.py
|
||||
~ cd my_package && cat torchvision/models/resnet.py
|
||||
...
|
||||
|
||||
|
||||
* The Python ``zipfile`` module provides a standard way to read and write ZIP archive contents.
|
||||
|
||||
|
||||
::
|
||||
|
||||
from zipfile import ZipFile
|
||||
with ZipFile("my_package.pt") as myzip:
|
||||
file_bytes = myzip.read("torchvision/models/resnet.py")
|
||||
# edit file_bytes in some way
|
||||
myzip.writestr("torchvision/models/resnet.py", new_file_bytes)
|
||||
|
||||
|
||||
* vim has the ability to natively read ZIP archives. You can even edit files and :``write`` them back into the archive!
|
||||
|
||||
|
||||
::
|
||||
|
||||
# add this to your .vimrc to treat `*.pt` files as zip files
|
||||
au BufReadCmd *.pt call zip#Browse(expand("<amatch>"))
|
||||
|
||||
~ vi my_package.pt
|
||||
|
||||
|
||||
Use the ``file_structure()`` API
|
||||
""""""""""""""""""""""""""""""""
|
||||
:class:`PackageImporter` provides a ``file_structure()`` method, which will return a printable
|
||||
and queryable :class:`Directory` object. The :class:`Directory` object is a simple directory structure that you can use to explore the
|
||||
current contents of a ``torch.package``.
|
||||
|
||||
The :class:`Directory` object itself is directly printable and will print out a file tree representation. To filter what is returned,
|
||||
use the glob-style ``include`` and ``exclude`` filtering arguments.
|
||||
|
||||
|
||||
::
|
||||
|
||||
with PackageExporter('my_package.pt') as pe:
|
||||
pe.save_pickle('models', 'model_1.pkl', mod)
|
||||
|
||||
importer = PackageImporter('my_package.pt')
|
||||
# can limit printed items with include/exclude args
|
||||
print(importer.file_structure(include=["**/utils.py", "**/*.pkl"], exclude="**/*.storage"))
|
||||
print(importer.file_structure()) # will print out all files
|
||||
|
||||
|
||||
Output:
|
||||
|
||||
|
||||
::
|
||||
|
||||
# filtered with glob pattern:
|
||||
# include=["**/utils.py", "**/*.pkl"], exclude="**/*.storage"
|
||||
─── my_package.pt
|
||||
├── models
|
||||
│ └── model_1.pkl
|
||||
└── torchvision
|
||||
└── models
|
||||
└── utils.py
|
||||
|
||||
# all files
|
||||
─── my_package.pt
|
||||
├── .data
|
||||
│ ├── 94304870911616.storage
|
||||
│ ├── 94304900784016.storage
|
||||
│ ├── extern_modules
|
||||
│ └── version
|
||||
├── models
|
||||
│ └── model_1.pkl
|
||||
└── torchvision
|
||||
└── models
|
||||
├── resnet.py
|
||||
└── utils.py
|
||||
|
||||
|
||||
You can also query :class:`Directory` objects with the ``has_file()`` method.
|
||||
|
||||
|
||||
::
|
||||
|
||||
importer_file_structure = importer.file_structure()
|
||||
found: bool = importer_file_structure.has_file("package_a/subpackage.py")
|
||||
|
||||
See why a given module was included as a dependency?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Say there is a given module ``foo``, and you want to know why your :class:`PackageExporter` is pulling in ``foo`` as a dependency.
|
||||
|
||||
:meth:`PackageExporter.get_rdeps` will return all modules that directly depend on ``foo``.
|
||||
|
||||
If you would like to see how a given module ``src`` depends on ``foo``, the :meth:`PackageExporter.all_paths` method will
|
||||
return a DOT-formatted graph showing all the dependency paths between ``src`` and ``foo``.
|
||||
|
||||
If you would just like to see the whole dependency graph of your :class:`PackageExporter`, you can use :meth:`PackageExporter.dependency_graph_string`.
|
||||
|
||||
|
||||
Include arbitrary resources with my package and access them later?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
:class:`PackageExporter` exposes three methods, ``save_pickle``, ``save_text`` and ``save_binary`` that allow you to save
|
||||
Python objects, text, and binary data to a package.
|
||||
|
||||
|
||||
::
|
||||
|
||||
with torch.PackageExporter("package.pt") as exporter:
|
||||
# Pickles the object and saves to `my_resources/tensor.pkl` in the archive.
|
||||
exporter.save_pickle("my_resources", "tensor.pkl", torch.randn(4))
|
||||
exporter.save_text("config_stuff", "words.txt", "a sample string")
|
||||
exporter.save_binary("raw_data", "binary", my_bytes)
|
||||
|
||||
|
||||
:class:`PackageImporter` exposes complementary methods named ``load_pickle``, ``load_text`` and ``load_binary`` that allow you to load
|
||||
Python objects, text and binary data from a package.
|
||||
|
||||
|
||||
::
|
||||
|
||||
importer = torch.PackageImporter("package.pt")
|
||||
my_tensor = importer.load_pickle("my_resources", "tensor.pkl")
|
||||
text = importer.load_text("config_stuff", "words.txt")
|
||||
binary = importer.load_binary("raw_data", "binary")
|
||||
|
||||
|
||||
Customize how a class is packaged?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
``torch.package`` allows for the customization of how classes are packaged. This behavior is accessed through defining the method
|
||||
``__reduce_package__`` on a class and by defining a corresponding de-packaging function. This is similar to defining ``__reduce__`` for
|
||||
Python’s normal pickling process.
|
||||
|
||||
Steps:
|
||||
|
||||
1. Define the method ``__reduce_package__(self, exporter: PackageExporter)`` on the target class. This method should do the work to save the class instance inside of the package, and should return a tuple of the corresponding de-packaging function with the arguments needed to invoke the de-packaging function. This method is called by the ``PackageExporter`` when it encounters an instance of the target class.
|
||||
2. Define a de-packaging function for the class. This de-packaging function should do the work to reconstruct and return an instance of the class. The function signature’s first parameter should be a ``PackageImporter`` instance, and the rest of the parameters are user defined.
|
||||
|
||||
|
||||
::
|
||||
|
||||
# foo.py [Example of customizing how class Foo is packaged]
|
||||
from torch.package import PackageExporter, PackageImporter
|
||||
import time
|
||||
|
||||
|
||||
class Foo:
|
||||
def __init__(self, my_string: str):
|
||||
super().__init__()
|
||||
self.my_string = my_string
|
||||
self.time_imported = 0
|
||||
self.time_exported = 0
|
||||
|
||||
def __reduce_package__(self, exporter: PackageExporter):
|
||||
"""
|
||||
Called by ``torch.package.PackageExporter``'s Pickler's ``persistent_id`` when
|
||||
saving an instance of this object. This method should do the work to save this
|
||||
object inside of the ``torch.package`` archive.
|
||||
|
||||
Returns function w/ arguments to load the object from a
|
||||
``torch.package.PackageImporter``'s Pickler's ``persistent_load`` function.
|
||||
"""
|
||||
|
||||
# use this pattern to ensure no naming conflicts with normal dependencies,
|
||||
# anything saved under this module name shouldn't conflict with other
|
||||
# items in the package
|
||||
generated_module_name = f"foo-generated._{exporter.get_unique_id()}"
|
||||
exporter.save_text(
|
||||
generated_module_name,
|
||||
"foo.txt",
|
||||
self.my_string + ", with exporter modification!",
|
||||
)
|
||||
time_exported = time.clock_gettime(1)
|
||||
|
||||
# returns de-packaging function w/ arguments to invoke with
|
||||
return (unpackage_foo, (generated_module_name, time_exported,))
|
||||
|
||||
|
||||
def unpackage_foo(
|
||||
importer: PackageImporter, generated_module_name: str, time_exported: float
|
||||
) -> Foo:
|
||||
"""
|
||||
Called by ``torch.package.PackageImporter``'s Pickler's ``persistent_load`` function
|
||||
when depickling a Foo object.
|
||||
Performs work of loading and returning a Foo instance from a ``torch.package`` archive.
|
||||
"""
|
||||
time_imported = time.clock_gettime(1)
|
||||
foo = Foo(importer.load_text(generated_module_name, "foo.txt"))
|
||||
foo.time_imported = time_imported
|
||||
foo.time_exported = time_exported
|
||||
return foo
|
||||
|
||||
|
||||
::
|
||||
|
||||
# example of saving instances of class Foo
|
||||
|
||||
import torch
|
||||
from torch.package import PackageImporter, PackageExporter
|
||||
import foo
|
||||
|
||||
foo_1 = foo.Foo("foo_1 initial string")
|
||||
foo_2 = foo.Foo("foo_2 initial string")
|
||||
with PackageExporter('foo_package.pt') as pe:
|
||||
# save as normal, no extra work necessary
|
||||
pe.save_pickle('foo_collection', 'foo1.pkl', foo_1)
|
||||
pe.save_pickle('foo_collection', 'foo2.pkl', foo_2)
|
||||
|
||||
pi = PackageImporter('foo_package.pt')
|
||||
print(pi.file_structure())
|
||||
imported_foo = pi.load_pickle('foo_collection', 'foo1.pkl')
|
||||
print(f"foo_1 string: '{imported_foo.my_string}'")
|
||||
print(f"foo_1 export time: {imported_foo.time_exported}")
|
||||
print(f"foo_1 import time: {imported_foo.time_imported}")
|
||||
|
||||
|
||||
::
|
||||
|
||||
# output of running above script
|
||||
─── foo_package
|
||||
├── foo-generated
|
||||
│ ├── _0
|
||||
│ │ └── foo.txt
|
||||
│ └── _1
|
||||
│ └── foo.txt
|
||||
├── foo_collection
|
||||
│ ├── foo1.pkl
|
||||
│ └── foo2.pkl
|
||||
└── foo.py
|
||||
|
||||
foo_1 string: 'foo_1 initial string, with reduction modification!'
|
||||
foo_1 export time: 9857706.650140837
|
||||
foo_1 import time: 9857706.652698385
|
||||
|
||||
|
||||
Test in my source code whether or not it is executing inside a package?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
A :class:`PackageImporter` will add the attribute ``__torch_package__`` to every module that it initializes. Your code can check for the
|
||||
presence of this attribute to determine whether it is executing in a packaged context or not.
|
||||
|
||||
|
||||
::
|
||||
|
||||
# In foo/bar.py:
|
||||
|
||||
if "__torch_package__" in dir(): # true if the code is being loaded from a package
|
||||
def is_in_package():
|
||||
return True
|
||||
|
||||
UserException = Exception
|
||||
else:
|
||||
def is_in_package():
|
||||
return False
|
||||
|
||||
UserException = UnpackageableException
|
||||
|
||||
|
||||
Now, the code will behave differently depending on whether it’s imported normally through your Python environment or imported from a
|
||||
``torch.package``.
|
||||
|
||||
|
||||
::
|
||||
|
||||
from foo.bar import is_in_package
|
||||
|
||||
print(is_in_package()) # False
|
||||
|
||||
loaded_module = PackageImporter(my_package).import_module("foo.bar")
|
||||
loaded_module.is_in_package() # True
|
||||
|
||||
|
||||
**Warning**: in general, it’s bad practice to have code that behaves differently depending on whether it’s packaged or not. This can lead to
|
||||
hard-to-debug issues that are sensitive to how you imported your code. If your package is intended to be heavily used, consider restructuring
|
||||
your code so that it behaves the same way no matter how it was loaded.
|
||||
|
||||
|
||||
Patch code into a package?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
:class:`PackageExporter` offers a ``save_source_string()`` method that allows one to save arbitrary Python source code to a module of your choosing.
|
||||
|
||||
|
||||
::
|
||||
|
||||
with PackageExporter(f) as exporter:
|
||||
# Save the my_module.foo available in your current Python environment.
|
||||
exporter.save_module("my_module.foo")
|
||||
|
||||
# This saves the provided string to my_module/foo.py in the package archive.
|
||||
# It will override the my_module.foo that was previously saved.
|
||||
exporter.save_source_string("my_module.foo", textwrap.dedent(
|
||||
"""\
|
||||
def my_function():
|
||||
print('hello world')
|
||||
"""
|
||||
))
|
||||
|
||||
# If you want to treat my_module.bar as a package
|
||||
# (e.g. save to `my_module/bar/__init__.py` instead of `my_module/bar.py)
|
||||
# pass is_package=True,
|
||||
exporter.save_source_string("my_module.bar",
|
||||
"def foo(): print('hello')\n",
|
||||
is_package=True)
|
||||
|
||||
importer = PackageImporter(f)
|
||||
importer.import_module("my_module.foo").my_function() # prints 'hello world'
|
||||
|
||||
|
||||
Access package contents from packaged code?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
:class:`PackageImporter` implements the
|
||||
`importlib.resources <https://docs.python.org/3/library/importlib.html#module-importlib.resources>`_
|
||||
API for accessing resources from inside a package.
|
||||
|
||||
|
||||
::
|
||||
|
||||
with PackageExporter(f) as exporter:
|
||||
# saves text to my_resource/a.txt in the archive
|
||||
exporter.save_text("my_resource", "a.txt", "hello world!")
|
||||
# saves the tensor to my_pickle/obj.pkl
|
||||
exporter.save_pickle("my_pickle", "obj.pkl", torch.ones(2, 2))
|
||||
|
||||
# see below for module contents
|
||||
exporter.save_module("foo")
|
||||
exporter.save_module("bar")
|
||||
|
||||
|
||||
The ``importlib.resources`` API allows access to resources from within packaged code.
|
||||
|
||||
|
||||
::
|
||||
|
||||
# foo.py:
|
||||
import importlib.resources
|
||||
import my_resource
|
||||
|
||||
# returns "hello world!"
|
||||
def get_my_resource():
|
||||
return importlib.resources.read_text(my_resource, "a.txt")
|
||||
|
||||
|
||||
Using ``importlib.resources`` is the recommended way to access package contents from within packaged code, since it complies
|
||||
with the Python standard. However, it is also possible to access the parent :class:`PackageImporter` instance itself from within
|
||||
packaged code.
|
||||
|
||||
|
||||
::
|
||||
|
||||
# bar.py:
|
||||
import torch_package_importer # this is the PackageImporter that imported this module.
|
||||
|
||||
# Prints "hello world!", equivalent to importlib.resources.read_text
|
||||
def get_my_resource():
|
||||
return torch_package_importer.load_text("my_resource", "a.txt")
|
||||
|
||||
# You also do things that the importlib.resources API does not support, like loading
|
||||
# a pickled object from the package.
|
||||
def get_my_pickle():
|
||||
return torch_package_importer.load_pickle("my_pickle", "obj.pkl")
|
||||
|
||||
|
||||
Distinguish between packaged code and non-packaged code?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
To tell if an object’s code is from a ``torch.package``, use the ``torch.package.is_from_package()`` function.
|
||||
Note: if an object is from a package but its definition is from a module marked ``extern`` or from ``stdlib``,
|
||||
this check will return ``False``.
|
||||
|
||||
|
||||
::
|
||||
|
||||
importer = PackageImporter(f)
|
||||
mod = importer.import_module('foo')
|
||||
obj = importer.load_pickle('model', 'model.pkl')
|
||||
txt = importer.load_text('text', 'my_test.txt')
|
||||
|
||||
assert is_from_package(mod)
|
||||
assert is_from_package(obj)
|
||||
assert not is_from_package(txt) # str is from stdlib, so this will return False
|
||||
|
||||
|
||||
Re-export an imported object?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
To re-export an object that was previously imported by a :class:`PackageImporter`, you must make the new :class:`PackageExporter`
|
||||
aware of the original :class:`PackageImporter` so that it can find source code for your object’s dependencies.
|
||||
|
||||
|
||||
::
|
||||
|
||||
importer = PackageImporter(f)
|
||||
obj = importer.load_pickle("model", "model.pkl")
|
||||
|
||||
# re-export obj in a new package
|
||||
with PackageExporter(f2, importer=(importer, sys_importer)) as exporter:
|
||||
exporter.save_pickle("model", "model.pkl", obj)
|
||||
|
||||
|
||||
Package a TorchScript module?
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
To package a TorchScript model, use the same ``save_pickle`` and ``load_pickle`` APIs as you would with any other object.
|
||||
Saving TorchScript objects that are attributes or submodules is supported as well with no extra work.
|
||||
|
||||
|
||||
::
|
||||
|
||||
# save TorchScript just like any other object
|
||||
with PackageExporter(file_name) as e:
|
||||
e.save_pickle("res", "script_model.pkl", scripted_model)
|
||||
e.save_pickle("res", "mixed_model.pkl", python_model_with_scripted_submodule)
|
||||
# load as normal
|
||||
importer = PackageImporter(file_name)
|
||||
loaded_script = importer.load_pickle("res", "script_model.pkl")
|
||||
loaded_mixed = importer.load_pickle("res", "mixed_model.pkl"
|
||||
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
``torch.package`` Format Overview
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
A ``torch.package`` file is a ZIP archive which conventionally uses the ``.pt`` extension. Inside the ZIP archive, there are two kinds of files:
|
||||
|
||||
* Framework files, which are placed in the ``.data/``.
|
||||
* User files, which is everything else.
|
||||
|
||||
As an example, this is what a fully packaged ResNet model from ``torchvision`` looks like:
|
||||
|
||||
|
||||
::
|
||||
|
||||
resnet
|
||||
├── .data # All framework-specific data is stored here.
|
||||
│ │ # It's named to avoid conflicts with user-serialized code.
|
||||
│ ├── 94286146172688.storage # tensor data
|
||||
│ ├── 94286146172784.storage
|
||||
│ ├── extern_modules # text file with names of extern modules (e.g. 'torch')
|
||||
│ ├── version # version metadata
|
||||
│ ├── ...
|
||||
├── model # the pickled model
|
||||
│ └── model.pkl
|
||||
└── torchvision # all code dependencies are captured as source files
|
||||
└── models
|
||||
├── resnet.py
|
||||
└── utils.py
|
||||
|
||||
|
||||
Framework files
|
||||
"""""""""""""""
|
||||
The ``.data/`` directory is owned by torch.package, and its contents are considered to be a private implementation detail.
|
||||
The ``torch.package`` format makes no guarantees about the contents of ``.data/``, but any changes made will be backward compatible
|
||||
(that is, newer version of PyTorch will always be able to load older ``torch.packages``).
|
||||
|
||||
Currently, the ``.data/`` directory contains the following items:
|
||||
|
||||
* ``version``: a version number for the serialized format, so that the ``torch.package`` import infrastructures knows how to load this package.
|
||||
* ``extern_modules``: a list of modules that are considered ``extern``. ``extern`` modules will be imported using the loading environment’s system importer.
|
||||
* ``*.storage``: serialized tensor data.
|
||||
|
||||
|
||||
::
|
||||
|
||||
.data
|
||||
├── 94286146172688.storage
|
||||
├── 94286146172784.storage
|
||||
├── extern_modules
|
||||
├── version
|
||||
├── ...
|
||||
|
||||
|
||||
User files
|
||||
""""""""""
|
||||
All other files in the archive were put there by a user. The layout is identical to a Python
|
||||
`regular package <https://docs.python.org/3/reference/import.html#regular-packages>`_. For a deeper dive in how Python packaging works,
|
||||
please consult `this essay <https://www.python.org/doc/essays/packages/>`_ (it’s slightly out of date, so double-check implementation details
|
||||
with the `Python reference documentation <https://docs.python.org/3/library/importlib.html>`_).
|
||||
|
||||
|
||||
::
|
||||
|
||||
<package root>
|
||||
├── model # the pickled model
|
||||
│ └── model.pkl
|
||||
├── another_package
|
||||
│ ├── __init__.py
|
||||
│ ├── foo.txt # a resource file , see importlib.resources
|
||||
│ └── ...
|
||||
└── torchvision
|
||||
└── models
|
||||
├── resnet.py # torchvision.models.resnet
|
||||
└── utils.py # torchvision.models.utils
|
||||
|
||||
|
||||
How ``torch.package`` finds your code's dependencies
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Analyzing an object's dependencies
|
||||
""""""""""""""""""""""""""""""""""
|
||||
When you issue a ``save_pickle(obj, ...)`` call, :class:`PackageExporter` will pickle the object normally. Then, it uses the
|
||||
``pickletools`` standard library module to parse the pickle bytecode.
|
||||
|
||||
In a pickle, an object is saved along with a ``GLOBAL`` opcode that describes where to find the implementation of the object’s type, like:
|
||||
|
||||
|
||||
::
|
||||
|
||||
GLOBAL 'torchvision.models.resnet Resnet`
|
||||
|
||||
|
||||
The dependency resolver will gather up all ``GLOBAL`` ops and mark them as dependencies of your pickled object.
|
||||
For more information about pickling and the pickle format, please consult `the Python docs <https://docs.python.org/3/library/pickle.html>`_.
|
||||
|
||||
Analyzing a module's dependencies
|
||||
"""""""""""""""""""""""""""""""""
|
||||
When a Python module is identified as a dependency, ``torch.package`` walks the module’s python AST representation and looks for import statements with
|
||||
full support for the standard forms: ``from x import y``, ``import z``, ``from w import v as u``, etc. When one of these import statements are
|
||||
encountered, ``torch.package`` registers the imported modules as dependencies that are then themselves parsed in the same AST walking way.
|
||||
|
||||
**Note**: AST parsing has limited support for the ``__import__(...)`` syntax and does not support ``importlib.import_module`` calls. In general, you should
|
||||
not expect dynamic imports to be detected by ``torch.package``.
|
||||
|
||||
|
||||
Dependency Management
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
``torch.package`` automatically finds the Python modules that your code and objects depend on. This process is called dependency resolution.
|
||||
For each module that the dependency resolver finds, you must specify an *action* to take.
|
||||
|
||||
The allowed actions are:
|
||||
|
||||
* ``intern``: put this module into the package.
|
||||
* ``extern``: declare this module as an external dependency of the package.
|
||||
* ``mock``: stub out this module.
|
||||
* ``deny``: depending on this module will raise an error during package export.
|
||||
|
||||
Finally, there is one more important action that is not technically part of ``torch.package``:
|
||||
|
||||
* Refactoring: remove or change the dependencies in your code.
|
||||
|
||||
Note that actions are only defined on entire Python modules. There is no way to package “just” a function or class from a module and leave the rest out.
|
||||
This is by design. Python does not offer clean boundaries between objects defined in a module. The only defined unit of dependency organization is a
|
||||
module, so that’s what ``torch.package`` uses.
|
||||
|
||||
Actions are applied to modules using patterns. Patterns can either be module names (``"foo.bar"``) or globs (like ``"foo.**"``). You associate a pattern
|
||||
with an action using methods on :class:`PackageExporter`, e.g.
|
||||
|
||||
|
||||
::
|
||||
|
||||
my_exporter.intern("torchvision.**")
|
||||
my_exporter.extern("numpy")
|
||||
|
||||
|
||||
If a module matches a pattern, the corresponding action is applied to it. For a given module, patterns will be checked in the order that they were defined,
|
||||
and the first action will be taken.
|
||||
|
||||
|
||||
``intern``
|
||||
""""""""""
|
||||
If a module is ``intern``-ed, it will be placed into the package.
|
||||
|
||||
This action is your model code, or any related code you want to package. For example, if you are trying to package a ResNet from ``torchvision``,
|
||||
you will need to ``intern`` the module torchvision.models.resnet.
|
||||
|
||||
On package import, when your packaged code tries to import an ``intern``-ed module, PackageImporter will look inside your package for that module.
|
||||
If it can’t find that module, an error will be raised. This ensures that each :class:`PackageImporter` is isolated from the loading environment—even
|
||||
if you have ``my_interned_module`` available in both your package and the loading environment, :class:`PackageImporter` will only use the version in your
|
||||
package.
|
||||
|
||||
**Note**: Only Python source modules can be ``intern``-ed. Other kinds of modules, like C extension modules and bytecode modules, will raise an error if
|
||||
you attempt to ``intern`` them. These kinds of modules need to be ``mock``-ed or ``extern``-ed.
|
||||
|
||||
|
||||
``extern``
|
||||
""""""""""
|
||||
If a module is ``extern``-ed, it will not be packaged. Instead, it will be added to a list of external dependencies for this package. You can find this
|
||||
list on ``package_exporter.extern_modules``.
|
||||
|
||||
On package import, when the packaged code tries to import an ``extern``-ed module, :class:`PackageImporter` will use the default Python importer to find
|
||||
that module, as if you did ``importlib.import_module("my_externed_module")``. If it can’t find that module, an error will be raised.
|
||||
|
||||
In this way, you can depend on third-party libraries like ``numpy`` and ``scipy`` from within your package without having to package them too.
|
||||
|
||||
**Warning**: If any external library changes in a backwards-incompatible way, your package may fail to load. If you need long-term reproducibility
|
||||
for your package, try to limit your use of ``extern``.
|
||||
|
||||
|
||||
``mock``
|
||||
""""""""
|
||||
If a module is ``mock``-ed, it will not be packaged. Instead a stub module will be packaged in its place. The stub module will allow you to retrieve
|
||||
objects from it (so that ``from my_mocked_module import foo`` will not error), but any use of that object will raise a ``NotImplementedError``.
|
||||
|
||||
``mock`` should be used for code that you “know” will not be needed in the loaded package, but you still want available for use in non-packaged contents.
|
||||
For example, initialization/configuration code, or code only used for debugging/training.
|
||||
|
||||
**Warning**: In general, ``mock`` should be used as a last resort. It introduces behavioral differences between packaged code and non-packaged code,
|
||||
which may lead to later confusion. Prefer instead to refactor your code to remove unwanted dependencies.
|
||||
|
||||
|
||||
Refactoring
|
||||
"""""""""""
|
||||
The best way to manage dependencies is to not have dependencies at all! Often, code can be refactored to remove unnecessary dependencies. Here are some
|
||||
guidelines for writing code with clean dependencies (which are also generally good practices!):
|
||||
|
||||
**Include only what you use**. Do not leave unused imports in your code. The dependency resolver is not smart enough to tell that they are indeed unused,
|
||||
and will try to process them.
|
||||
|
||||
**Qualify your imports**. For example, instead of writing import foo and later using ``foo.bar.baz``, prefer to write ``from foo.bar import baz``. This more
|
||||
precisely specifies your real dependency (``foo.bar``) and lets the dependency resolver know you don’t need all of ``foo``.
|
||||
|
||||
**Split up large files with unrelated functionality into smaller ones**. If your ``utils`` module contains a hodge-podge of unrelated functionality, any module
|
||||
that depends on ``utils`` will need to pull in lots of unrelated dependencies, even if you only needed a small part of it. Prefer instead to define
|
||||
single-purpose modules that can be packaged independently of one another.
|
||||
|
||||
|
||||
Patterns
|
||||
""""""""
|
||||
Patterns allow you to specify groups of modules with a convenient syntax. The syntax and behavior of patterns follows the Bazel/Buck
|
||||
`glob() <https://docs.bazel.build/versions/master/be/functions.html#glob>`_.
|
||||
|
||||
A module that we are trying to match against a pattern is called a candidate. A candidate is composed of a list of segments separated by a
|
||||
separator string, e.g. ``foo.bar.baz``.
|
||||
|
||||
A pattern contains one or more segments. Segments can be:
|
||||
|
||||
* A literal string (e.g. ``foo``), which matches exactly.
|
||||
* A string containing a wildcard (e.g. ``torch``, or ``foo*baz*``). The wildcard matches any string, including the empty string.
|
||||
* A double wildcard (``**``). This matches against zero or more complete segments.
|
||||
|
||||
Examples:
|
||||
|
||||
* ``torch.**``: matches ``torch`` and all its submodules, e.g. ``torch.nn`` and ``torch.nn.functional``.
|
||||
* ``torch.*``: matches ``torch.nn`` or ``torch.functional``, but not ``torch.nn.functional`` or ``torch``
|
||||
* ``torch*.**``: matches ``torch``, ``torchvision``, and all of their submodules
|
||||
|
||||
When specifying actions, you can pass multiple patterns, e.g.
|
||||
|
||||
|
||||
::
|
||||
|
||||
exporter.intern(["torchvision.models.**", "torchvision.utils.**"])
|
||||
|
||||
|
||||
A module will match against this action if it matches any of the patterns.
|
||||
|
||||
You can also specify patterns to exclude, e.g.
|
||||
|
||||
|
||||
::
|
||||
|
||||
exporter.mock("**", exclude=["torchvision.**"])
|
||||
|
||||
|
||||
A module will not match against this action if it matches any of the exclude patterns. In this example, we are mocking all modules except
|
||||
``torchvision`` and its submodules.
|
||||
|
||||
When a module could potentially match against multiple actions, the first action defined will be taken.
|
||||
|
||||
|
||||
``torch.package`` sharp edges
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Avoid global state in your modules
|
||||
""""""""""""""""""""""""""""""""""
|
||||
Python makes it really easy to bind objects and run code at module-level scope. This is generally fine—after all, functions and classes are bound to
|
||||
names this way. However, things become more complicated when you define an object at module scope with the intention of mutating it, introducing mutable
|
||||
global state.
|
||||
|
||||
Mutable global state is quite useful—it can reduce boilerplate, allow for open registration into tables, etc. But unless employed very carefully, it can
|
||||
cause complications when used with ``torch.package``.
|
||||
|
||||
Every :class:`PackageImporter` creates an independent environment for its contents. This is nice because it means we load multiple packages and ensure
|
||||
they are isolated from each other, but when modules are written in a way that assumes shared mutable global state, this behavior can create hard-to-debug
|
||||
errors.
|
||||
|
||||
Types are not shared between packages and the loading environment
|
||||
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
||||
Any class that you import from a :class:`PackageImporter` will be a version of the class specific to that importer. For example:
|
||||
|
||||
|
||||
::
|
||||
|
||||
from foo import MyClass
|
||||
|
||||
my_class_instance = MyClass()
|
||||
|
||||
with PackageExporter(f) as exporter:
|
||||
exporter.save_module("foo")
|
||||
|
||||
importer = PackageImporter(f)
|
||||
imported_MyClass = importer.import_module("foo").MyClass
|
||||
|
||||
assert isinstance(my_class_instance, MyClass) # works
|
||||
assert isinstance(my_class_instance, imported_MyClass) # ERROR!
|
||||
|
||||
|
||||
In this example, ``MyClass`` and ``imported_MyClass`` are *not the same type*. In this specific example, ``MyClass`` and ``imported_MyClass`` have exactly the
|
||||
same implementation, so you might think it’s okay to consider them the same class. But consider the situation where ``imported_MyClass`` is coming from an
|
||||
older package with an entirely different implementation of ``MyClass`` — in that case, it’s unsafe to consider them the same class.
|
||||
|
||||
Under the hood, each importer has a prefix that allows it to uniquely identify classes:
|
||||
|
||||
|
||||
::
|
||||
|
||||
print(MyClass.__name__) # prints "foo.MyClass"
|
||||
print(imported_MyClass.__name__) # prints <torch_package_0>.foo.MyClass
|
||||
|
||||
|
||||
That means you should not expect ``isinstance`` checks to work when one of the arguments is from a package and the other is not. If you need this
|
||||
functionality, consider the following options:
|
||||
|
||||
* Doing duck typing (just using the class instead of explicitly checking that it is of a given type).
|
||||
* Make the typing relationship an explicit part of the class contract. For example, you can add an attribute tag ``self.handler = "handle_me_this_way"`` and have client code check for the value of ``handler`` instead of checking the type directly.
|
||||
|
||||
|
||||
How ``torch.package`` keeps packages isolated from each other
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Each :class:`PackageImporter` instance creates an independent, isolated environment for its modules and objects. Modules in a package can only import
|
||||
other packaged modules, or modules marked ``extern``. If you use multiple :class:`PackageImporter` instances to load a single package, you will get
|
||||
multiple independent environments that do not interact.
|
||||
|
||||
This is achieved by extending Python’s import infrastructure with a custom importer. :class:`PackageImporter` provides the same core API as the
|
||||
``importlib`` importer; namely, it implements the ``import_module`` and ``__import__`` methods.
|
||||
|
||||
When you invoke :meth:`PackageImporter.import_module`, :class:`PackageImporter` will construct and return a new module, much as the system importer does.
|
||||
However, :class:`PackageImporter` patches the returned module to use ``self`` (i.e. that :class:`PackageImporter` instance) to fulfill future import
|
||||
requests by looking in the package rather than searching the user’s Python environment.
|
||||
|
||||
Mangling
|
||||
""""""""
|
||||
To avoid confusion (“is this ``foo.bar`` object the one from my package, or the one from my Python environment?”), :class:`PackageImporter` mangles the
|
||||
``__name__`` and ``__file__`` of all imported modules, by adding a *mangle prefix* to them.
|
||||
|
||||
For ``__name__``, a name like ``torchvision.models.resnet18`` becomes ``<torch_package_0>.torchvision.models.resnet18``.
|
||||
|
||||
For ``__file__``, a name like ``torchvision/models/resnet18.py`` becomes ``<torch_package_0>.torchvision/modules/resnet18.py``.
|
||||
|
||||
Name mangling helps avoid inadvertent punning of module names between different packages, and helps you debug by making stack traces and print
|
||||
statements more clearly show whether they are referring to packaged code or not. For developer-facing details about mangling, consult
|
||||
``mangling.md`` in ``torch/package/``.
|
||||
|
||||
|
||||
API Reference
|
||||
-------------
|
||||
.. autoclass:: torch.package.PackagingError
|
||||
|
||||
.. autoclass:: torch.package.EmptyMatchError
|
||||
|
||||
.. autoclass:: torch.package.PackageExporter
|
||||
:members:
|
||||
|
||||
.. automethod:: __init__
|
||||
|
||||
.. autoclass:: torch.package.PackageImporter
|
||||
:members:
|
||||
|
||||
.. automethod:: __init__
|
||||
|
||||
.. autoclass:: torch.package.Directory
|
||||
:members:
|
||||
|
||||
|
||||
.. This module needs to be documented. Adding here in the meantime
|
||||
.. for tracking purposes
|
||||
.. py:module:: torch.package.analyze.find_first_use_of_broken_modules
|
||||
.. py:module:: torch.package.analyze.is_from_package
|
||||
.. py:module:: torch.package.analyze.trace_dependencies
|
||||
.. py:module:: torch.package.file_structure_representation
|
||||
.. py:module:: torch.package.find_file_dependencies
|
||||
.. py:module:: torch.package.glob_group
|
||||
.. py:module:: torch.package.importer
|
||||
.. py:module:: torch.package.package_exporter
|
||||
.. py:module:: torch.package.package_importer
|
||||
Loading…
Reference in New Issue
Block a user