Add option to run AOT Precompile in benchmark (#164906)

Use the existing benchmark infra to get some signals for AOT precompile pass rate on OSS models. Here we also measure and log the loading time.

```
python ./benchmarks/dynamo/huggingface.py --accuracy --inference --aot-precompile

python ./benchmarks/dynamo/timm_models.py --accuracy --inference --aot-precompile

python ./benchmarks/dynamo/torchbench.py --accuracy --inference --aot-precompile
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164906
Approved by: https://github.com/zhxchen17
This commit is contained in:
Yiming Zhou 2025-10-14 20:59:52 +00:00 committed by PyTorch MergeBot
parent 382d04a51e
commit 102b7885ff

View File

@ -1060,6 +1060,8 @@ def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwargs):
frozen_model_iter_fn = export_nativert(model, example_inputs)
elif args.torchscript_jit_trace:
frozen_model_iter_fn = torchscript_jit_trace(model, example_inputs)
elif args.aot_precompile:
frozen_model_iter_fn = aot_precompile(model, example_inputs)
else:
if kwargs["hf_llm"]:
# If it's an llm, we want to optimize model.forward, and use
@ -1495,6 +1497,37 @@ def export(model, example_inputs):
return opt_export
def aot_precompile(model, example_inputs):
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
with tempfile.NamedTemporaryFile(suffix=".pt", delete=False) as f:
save_path = f.name
with fresh_cache(), torch._dynamo.config.patch("enable_aot_compile", True):
compiled_fn = torch.compile(
model,
fullgraph=True,
options={"guard_filter_fn": lambda guards: [False for _ in guards]},
).forward.aot_compile((example_args, example_kwargs))
compiled_fn.save_compiled_function(save_path)
torch._dynamo.reset()
with open(save_path, "rb") as f:
load_start_time = time.perf_counter()
loaded_fn = torch.compiler.load_compiled_function(f)
load_end_time = time.perf_counter()
print(
f"AOT Precompile loading time: {load_end_time - load_start_time} seconds"
)
def opt_aot_precompile(_, example_inputs, collect_outputs=False):
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
return loaded_fn(model, *example_args, **example_kwargs)
return opt_aot_precompile
def export_nativert(model, example_inputs):
optimized = NativeRTCache.load(model, example_inputs)
@ -2274,6 +2307,7 @@ class BenchmarkRunner:
or self.args.export_aot_inductor
or self.args.export_nativert
or self.args.torchscript_jit_trace
or self.args.aot_precompile
):
# apply export on module directly
# no need for n iterations
@ -2729,6 +2763,7 @@ class BenchmarkRunner:
self.args.export_aot_inductor
or self.args.export_nativert
or self.args.torchscript_jit_trace
or self.args.aot_precompile
):
optimized_model_iter_fn = optimize_ctx
else:
@ -3505,6 +3540,11 @@ def parse_args(args=None):
action="store_true",
help="Measure pass rate with Export+AOTInductor",
)
group.add_argument(
"--aot-precompile",
action="store_true",
help="Measure pass rate with AOT Precompile",
)
group.add_argument(
"--export-nativert",
action="store_true",
@ -3935,6 +3975,10 @@ def run(runner, args, original_dir=None):
optimize_ctx = export
experiment = speedup_experiment
output_filename = "export.csv"
elif args.aot_precompile:
optimize_ctx = aot_precompile
experiment = speedup_experiment
output_filename = "aot_precompile.csv"
elif args.export_nativert:
optimize_ctx = export_nativert
experiment = speedup_experiment