[torchfuzz] remove supports_variable_inputs for now (#163553)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163553
Approved by: https://github.com/laithsakka
ghstack dependencies: #163547
This commit is contained in:
bobrenjc93 2025-09-22 14:12:01 -07:00 committed by PyTorch MergeBot
parent fcd79d5228
commit 0e122380c2
8 changed files with 0 additions and 32 deletions

View File

@ -21,10 +21,6 @@ class AddOperator(Operator):
"""Add can produce tensors but not scalars.""" """Add can produce tensors but not scalars."""
return isinstance(output_spec, TensorSpec) return isinstance(output_spec, TensorSpec)
def supports_variable_inputs(self) -> bool:
"""Add operator supports variable number of inputs."""
return True
def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]: def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]:
"""Decompose tensor into input tensors for addition with type promotion.""" """Decompose tensor into input tensors for addition with type promotion."""
if not isinstance(output_spec, TensorSpec): if not isinstance(output_spec, TensorSpec):

View File

@ -14,10 +14,6 @@ class ArgOperator(Operator):
"""Arg can produce any type of output.""" """Arg can produce any type of output."""
return True return True
def supports_variable_inputs(self) -> bool:
"""Arg operator does not require inputs."""
return False
def decompose(self, output_spec: Spec, num_inputs: int = 0) -> list[Spec]: def decompose(self, output_spec: Spec, num_inputs: int = 0) -> list[Spec]:
"""Arg requires no inputs.""" """Arg requires no inputs."""
return [] return []

View File

@ -16,10 +16,6 @@ class Operator(ABC):
def can_produce(self, output_spec: Spec) -> bool: def can_produce(self, output_spec: Spec) -> bool:
"""Check if this operator can produce the given output spec.""" """Check if this operator can produce the given output spec."""
@abstractmethod
def supports_variable_inputs(self) -> bool:
"""Check if this operator supports variable number of inputs."""
@abstractmethod @abstractmethod
def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]: def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]:
"""Decompose output spec into input specs.""" """Decompose output spec into input specs."""

View File

@ -20,10 +20,6 @@ class ConstantOperator(Operator):
"""Constant can produce any type of output.""" """Constant can produce any type of output."""
return True return True
def supports_variable_inputs(self) -> bool:
"""Constant operator does not require inputs."""
return False
def decompose(self, output_spec: Spec, num_inputs: int = 0) -> list[Spec]: def decompose(self, output_spec: Spec, num_inputs: int = 0) -> list[Spec]:
"""Constant requires no inputs.""" """Constant requires no inputs."""
return [] return []

View File

@ -14,10 +14,6 @@ class ItemOperator(Operator):
"""Item can only produce scalars.""" """Item can only produce scalars."""
return isinstance(output_spec, ScalarSpec) return isinstance(output_spec, ScalarSpec)
def supports_variable_inputs(self) -> bool:
"""Item operator does not support variable number of inputs."""
return False
def decompose(self, output_spec: Spec, num_inputs: int = 1) -> list[Spec]: def decompose(self, output_spec: Spec, num_inputs: int = 1) -> list[Spec]:
"""Decompose scalar into a single-element tensor for item operation.""" """Decompose scalar into a single-element tensor for item operation."""
if not isinstance(output_spec, ScalarSpec): if not isinstance(output_spec, ScalarSpec):

View File

@ -16,10 +16,6 @@ class MulOperator(Operator):
"""Mul can produce tensors but not scalars.""" """Mul can produce tensors but not scalars."""
return isinstance(output_spec, TensorSpec) return isinstance(output_spec, TensorSpec)
def supports_variable_inputs(self) -> bool:
"""Mul operator supports variable number of inputs."""
return True
def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]: def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]:
"""Decompose tensor into input tensors for multiplication with type promotion.""" """Decompose tensor into input tensors for multiplication with type promotion."""
if not isinstance(output_spec, TensorSpec): if not isinstance(output_spec, TensorSpec):

View File

@ -16,10 +16,6 @@ class ScalarAddOperator(Operator):
"""Scalar add can only produce scalars.""" """Scalar add can only produce scalars."""
return isinstance(output_spec, ScalarSpec) return isinstance(output_spec, ScalarSpec)
def supports_variable_inputs(self) -> bool:
"""Scalar add operator does not support variable number of inputs."""
return False
def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]: def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]:
"""Decompose scalar into input scalars for addition with type promotion.""" """Decompose scalar into input scalars for addition with type promotion."""
if not isinstance(output_spec, ScalarSpec): if not isinstance(output_spec, ScalarSpec):

View File

@ -16,10 +16,6 @@ class ScalarMultiplyOperator(Operator):
"""Scalar multiply can only produce scalars.""" """Scalar multiply can only produce scalars."""
return isinstance(output_spec, ScalarSpec) return isinstance(output_spec, ScalarSpec)
def supports_variable_inputs(self) -> bool:
"""Scalar multiply operator does not support variable number of inputs."""
return False
def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]: def decompose(self, output_spec: Spec, num_inputs: int = 2) -> list[Spec]:
"""Decompose scalar into input scalars for multiplication with type promotion.""" """Decompose scalar into input scalars for multiplication with type promotion."""
if not isinstance(output_spec, ScalarSpec): if not isinstance(output_spec, ScalarSpec):