mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Add type suppressions to _inductor/runtime (#165918)
Original PR that did this was reverted due to merge conflicts. Trying it again Pull Request resolved: https://github.com/pytorch/pytorch/pull/165918 Approved by: https://github.com/oulgen
This commit is contained in:
parent
7406d2e665
commit
0be0de4ffa
|
|
@ -23,10 +23,12 @@ project-includes = [
|
|||
project-excludes = [
|
||||
# ==== below will be enabled directory by directory ====
|
||||
# ==== to test Pyrefly on a specific directory, simply comment it out ====
|
||||
"torch/_inductor/runtime",
|
||||
"torch/_inductor/codegen/triton.py",
|
||||
"tools/linter/adapters/test_device_bias_linter.py",
|
||||
"tools/code_analyzer/gen_operators_yaml.py",
|
||||
"torch/_inductor/runtime/triton_heuristics.py",
|
||||
"torch/_inductor/runtime/triton_helpers.py",
|
||||
"torch/_inductor/runtime/halide_helpers.py",
|
||||
# formatting issues, will turn on after adjusting where suppressions can be
|
||||
# in import statements
|
||||
"tools/flight_recorder/components/types.py",
|
||||
|
|
|
|||
|
|
@ -591,6 +591,7 @@ def run_until_failure(
|
|||
pbar.set_postfix_str(f"{total_successful}/{total_ignored}")
|
||||
|
||||
def write_func(msg):
|
||||
# pyrefly: ignore # missing-attribute
|
||||
pbar.write(msg)
|
||||
else:
|
||||
pbar = None
|
||||
|
|
|
|||
|
|
@ -275,8 +275,11 @@ class AutotuneCache:
|
|||
triton_cache_hash: str | None = None,
|
||||
) -> None:
|
||||
data = {
|
||||
# pyrefly: ignore # missing-attribute
|
||||
**config.kwargs,
|
||||
# pyrefly: ignore # missing-attribute
|
||||
"num_warps": config.num_warps,
|
||||
# pyrefly: ignore # missing-attribute
|
||||
"num_stages": config.num_stages,
|
||||
"configs_hash": self.configs_hash,
|
||||
"found_by_coordesc": found_by_coordesc,
|
||||
|
|
@ -570,15 +573,20 @@ def _load_cached_autotuning(
|
|||
)
|
||||
|
||||
# Create the triton_config with the appropriate arguments
|
||||
# pyrefly: ignore # bad-argument-count
|
||||
triton_config = Config(best_config, **config_args)
|
||||
# pyrefly: ignore # missing-attribute
|
||||
triton_config.found_by_coordesc = True
|
||||
return triton_config
|
||||
|
||||
matching_configs = [
|
||||
cfg
|
||||
for cfg in configs
|
||||
# pyrefly: ignore # missing-attribute
|
||||
if all(val == best_config.get(key) for key, val in cfg.kwargs.items())
|
||||
# pyrefly: ignore # missing-attribute
|
||||
and cfg.num_warps == best_config.get("num_warps")
|
||||
# pyrefly: ignore # missing-attribute
|
||||
and cfg.num_stages == best_config.get("num_stages")
|
||||
]
|
||||
if len(matching_configs) != 1:
|
||||
|
|
|
|||
|
|
@ -123,6 +123,7 @@ class Benchmarker:
|
|||
- The runtime of `fn(*fn_args, **fn_kwargs)`, in milliseconds.
|
||||
"""
|
||||
inferred_device = None
|
||||
# pyrefly: ignore # bad-assignment
|
||||
for arg_or_kwarg in chain(fn_args, fn_kwargs.values()):
|
||||
if not isinstance(arg_or_kwarg, torch.Tensor):
|
||||
continue
|
||||
|
|
@ -196,6 +197,7 @@ class TritonBenchmarker(Benchmarker):
|
|||
|
||||
@may_distort_benchmarking_result
|
||||
@time_and_count
|
||||
# pyrefly: ignore # bad-override
|
||||
def benchmark_gpu(
|
||||
self: Self,
|
||||
_callable: Callable[[], Any],
|
||||
|
|
|
|||
|
|
@ -190,6 +190,7 @@ class _OnDiskCacheImpl(_CacheImpl):
|
|||
Defaults to empty string if not specified.
|
||||
"""
|
||||
self._cache_dir: Path = self._base_dir / (sub_dir or "")
|
||||
# pyrefly: ignore # bad-assignment
|
||||
self._flock: FileLock = FileLock(str(self._cache_dir / "dir.lock"))
|
||||
|
||||
@property
|
||||
|
|
|
|||
|
|
@ -186,6 +186,7 @@ class CoordescTuner:
|
|||
|
||||
def check_all_tuning_directions(
|
||||
self,
|
||||
# pyrefly: ignore # missing-attribute
|
||||
func: Callable[["triton.Config"], float],
|
||||
best_config,
|
||||
best_timing,
|
||||
|
|
@ -255,10 +256,12 @@ class CoordescTuner:
|
|||
|
||||
def autotune(
|
||||
self,
|
||||
# pyrefly: ignore # missing-attribute
|
||||
func: Callable[["triton.Config"], float],
|
||||
# pyrefly: ignore # missing-attribute
|
||||
baseline_config: "triton.Config",
|
||||
baseline_timing: float | None = None,
|
||||
) -> "triton.Config":
|
||||
) -> "triton.Config": # pyrefly: ignore # missing-attribute
|
||||
if baseline_timing is None:
|
||||
baseline_timing = self.call_func(func, baseline_config)
|
||||
|
||||
|
|
|
|||
|
|
@ -89,11 +89,13 @@ if has_triton_package():
|
|||
divisible_by_16=None,
|
||||
equal_to_1=None,
|
||||
):
|
||||
# pyrefly: ignore # not-iterable
|
||||
return {(x,): [["tt.divisibility", 16]] for x in divisible_by_16}
|
||||
|
||||
else:
|
||||
# Define a namedtuple as a fallback when AttrsDescriptor is not available
|
||||
AttrsDescriptorWrapper = collections.namedtuple( # type: ignore[no-redef, name-match]
|
||||
# pyrefly: ignore # invalid-argument
|
||||
"AttrsDescriptor",
|
||||
["divisible_by_16", "equal_to_1"],
|
||||
defaults=[(), ()],
|
||||
|
|
|
|||
|
|
@ -68,8 +68,11 @@ def triton_config_to_hashable(cfg: Config) -> Hashable:
|
|||
Convert triton config to a tuple that can uniquely identify it. We can use
|
||||
the return value as a dictionary key.
|
||||
"""
|
||||
# pyrefly: ignore # missing-attribute
|
||||
items = sorted(cfg.kwargs.items())
|
||||
# pyrefly: ignore # missing-attribute
|
||||
items.append(("num_warps", cfg.num_warps))
|
||||
# pyrefly: ignore # missing-attribute
|
||||
items.append(("num_stages", cfg.num_stages))
|
||||
return tuple(items)
|
||||
|
||||
|
|
@ -103,6 +106,7 @@ def get_max_y_grid() -> int:
|
|||
|
||||
|
||||
try:
|
||||
# pyrefly: ignore # import-error
|
||||
import colorama
|
||||
|
||||
HAS_COLORAMA = True
|
||||
|
|
@ -114,6 +118,7 @@ except ModuleNotFoundError:
|
|||
if HAS_COLORAMA:
|
||||
|
||||
def _color_text(msg: str, color: str) -> str:
|
||||
# pyrefly: ignore # missing-attribute
|
||||
return getattr(colorama.Fore, color.upper()) + msg + colorama.Fore.RESET
|
||||
|
||||
else:
|
||||
|
|
|
|||
|
|
@ -34,21 +34,29 @@ class StaticallyLaunchedCudaKernel:
|
|||
"""
|
||||
|
||||
def __init__(self, kernel: CompiledKernel) -> None:
|
||||
# pyrefly: ignore # missing-attribute
|
||||
self.name = kernel.src.fn.__name__
|
||||
# pyrefly: ignore # missing-attribute
|
||||
self.cubin_raw = kernel.asm.get("cubin", None)
|
||||
# pyrefly: ignore # missing-attribute
|
||||
self.cubin_path = kernel._cubin_path
|
||||
|
||||
# Used by torch.compile to filter constants in older triton versions
|
||||
# pyrefly: ignore # missing-attribute
|
||||
self.arg_names = kernel.src.fn.arg_names
|
||||
|
||||
# Const exprs that are declared by the triton kernel directly
|
||||
# Used to generate the kernel launcher's def args
|
||||
# pyrefly: ignore # missing-attribute
|
||||
self.declared_constexprs = kernel.src.fn.constexprs
|
||||
|
||||
# pyrefly: ignore # missing-attribute
|
||||
self.hash = kernel.hash
|
||||
|
||||
if triton_knobs is None:
|
||||
# pyrefly: ignore # missing-attribute
|
||||
launch_enter = kernel.__class__.launch_enter_hook
|
||||
# pyrefly: ignore # missing-attribute
|
||||
launch_exit = kernel.__class__.launch_exit_hook
|
||||
else:
|
||||
launch_enter = triton_knobs.runtime.launch_enter_hook
|
||||
|
|
@ -70,12 +78,15 @@ class StaticallyLaunchedCudaKernel:
|
|||
raise NotImplementedError(
|
||||
"We don't support launch enter or launch exit hooks"
|
||||
)
|
||||
# pyrefly: ignore # missing-attribute
|
||||
self.num_warps = kernel.metadata.num_warps
|
||||
self.shared = (
|
||||
# pyrefly: ignore # missing-attribute
|
||||
kernel.shared if hasattr(kernel, "shared") else kernel.metadata.shared
|
||||
)
|
||||
|
||||
def needs_scratch_arg(scratch_name: str, param_name: str) -> bool:
|
||||
# pyrefly: ignore # missing-attribute
|
||||
if hasattr(kernel.metadata, param_name):
|
||||
if getattr(kernel.metadata, param_name) > 0:
|
||||
raise NotImplementedError(
|
||||
|
|
@ -91,6 +102,7 @@ class StaticallyLaunchedCudaKernel:
|
|||
# same situation for profile scratch - triton-lang/triton#7258
|
||||
self.has_profile_scratch = needs_scratch_arg("Profile", "profile_scratch_size")
|
||||
|
||||
# pyrefly: ignore # missing-attribute
|
||||
self.arg_tys = self.arg_ty_from_signature(kernel.src)
|
||||
self.function: int | None = None # Loaded by load_kernel(on the parent process)
|
||||
num_ctas = 1
|
||||
|
|
@ -170,6 +182,7 @@ class StaticallyLaunchedCudaKernel:
|
|||
def arg_ty_from_signature(self, src: ASTSource) -> str:
|
||||
def index_key(i: Any) -> int:
|
||||
if isinstance(i, str):
|
||||
# pyrefly: ignore # missing-attribute
|
||||
return src.fn.arg_names.index(i)
|
||||
elif isinstance(i, tuple):
|
||||
# In triton 3.3, src.fn.constants has tuples as a key
|
||||
|
|
@ -177,6 +190,7 @@ class StaticallyLaunchedCudaKernel:
|
|||
else:
|
||||
return i
|
||||
|
||||
# pyrefly: ignore # missing-attribute
|
||||
signature = {index_key(key): value for key, value in src.signature.items()}
|
||||
# Triton uses these as the main way to filter out constants passed to their cubin
|
||||
constants = [index_key(key) for key in getattr(src, "constants", dict())]
|
||||
|
|
@ -198,6 +212,7 @@ class StaticallyLaunchedCudaKernel:
|
|||
if ty == "constexpr" or i in constants:
|
||||
pass
|
||||
else:
|
||||
# pyrefly: ignore # bad-argument-type
|
||||
params.append(self.extract_type(ty))
|
||||
return "".join(params)
|
||||
|
||||
|
|
@ -235,6 +250,7 @@ class StaticallyLaunchedCudaKernel:
|
|||
if has_scratch:
|
||||
arg_tys = arg_tys + "O"
|
||||
args = (*args, None)
|
||||
# pyrefly: ignore # bad-argument-type
|
||||
assert len(args) == len(arg_tys)
|
||||
|
||||
# TODO: can handle grid functions here or in C++, so
|
||||
|
|
@ -247,6 +263,7 @@ class StaticallyLaunchedCudaKernel:
|
|||
self.num_warps,
|
||||
self.shared,
|
||||
arg_tys,
|
||||
# pyrefly: ignore # bad-argument-type
|
||||
args,
|
||||
stream,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -21,6 +21,7 @@ def is_available():
|
|||
|
||||
def is_acl_available():
|
||||
r"""Return whether PyTorch is built with MKL-DNN + ACL support."""
|
||||
# pyrefly: ignore # missing-attribute
|
||||
return torch._C._has_mkldnn_acl
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1074,6 +1074,7 @@ def _set_memory_metadata(metadata: str):
|
|||
metadata (str): Custom metadata string to attach to allocations.
|
||||
Pass an empty string to clear the metadata.
|
||||
"""
|
||||
# pyrefly: ignore # missing-attribute
|
||||
torch._C._cuda_setMemoryMetadata(metadata)
|
||||
|
||||
|
||||
|
|
@ -1084,6 +1085,7 @@ def _get_memory_metadata() -> str:
|
|||
Returns:
|
||||
str: The current metadata string, or empty string if no metadata is set.
|
||||
"""
|
||||
# pyrefly: ignore # missing-attribute
|
||||
return torch._C._cuda_getMemoryMetadata()
|
||||
|
||||
|
||||
|
|
@ -1106,6 +1108,7 @@ def _save_memory_usage(filename="output.svg", snapshot=None):
|
|||
category=FutureWarning,
|
||||
)
|
||||
def _set_allocator_settings(env: str):
|
||||
# pyrefly: ignore # missing-attribute
|
||||
return torch._C._accelerator_setAllocatorSettings(env)
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user