mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Clean up some type annotations in android (#49944)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/49944 Upgrades type annotations from Python2 to Python3 Test Plan: Sandcastle tests Reviewed By: xush6528 Differential Revision: D25717539 fbshipit-source-id: c621e2712e87eaed08cda48eb0fb224f6b0570c9
This commit is contained in:
parent
f83d57f99e
commit
09eefec627
|
|
@ -20,92 +20,77 @@ class Test(torch.jit.ScriptModule):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def eqBool(self, input):
|
def eqBool(self, input: bool) -> bool:
|
||||||
# type: (bool) -> bool
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def eqInt(self, input):
|
def eqInt(self, input: int) -> int:
|
||||||
# type: (int) -> int
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def eqFloat(self, input):
|
def eqFloat(self, input: float) -> float:
|
||||||
# type: (float) -> float
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def eqStr(self, input):
|
def eqStr(self, input: str) -> str:
|
||||||
# type: (str) -> str
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def eqTensor(self, input):
|
def eqTensor(self, input: Tensor) -> Tensor:
|
||||||
# type: (Tensor) -> Tensor
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def eqDictStrKeyIntValue(self, input):
|
def eqDictStrKeyIntValue(self, input: Dict[str, int]) -> Dict[str, int]:
|
||||||
# type: (Dict[str, int]) -> Dict[str, int]
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def eqDictIntKeyIntValue(self, input):
|
def eqDictIntKeyIntValue(self, input: Dict[int, int]) -> Dict[int, int]:
|
||||||
# type: (Dict[int, int]) -> Dict[int, int]
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def eqDictFloatKeyIntValue(self, input):
|
def eqDictFloatKeyIntValue(self, input: Dict[float, int]) -> Dict[float, int]:
|
||||||
# type: (Dict[float, int]) -> Dict[float, int]
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def listIntSumReturnTuple(self, input):
|
def listIntSumReturnTuple(self, input: List[int]) -> Tuple[List[int], int]:
|
||||||
# type: (List[int]) -> Tuple[List[int], int]
|
|
||||||
sum = 0
|
sum = 0
|
||||||
for x in input:
|
for x in input:
|
||||||
sum += x
|
sum += x
|
||||||
return (input, sum)
|
return (input, sum)
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def listBoolConjunction(self, input):
|
def listBoolConjunction(self, input: List[bool]) -> bool:
|
||||||
# type: (List[bool]) -> bool
|
|
||||||
res = True
|
res = True
|
||||||
for x in input:
|
for x in input:
|
||||||
res = res and x
|
res = res and x
|
||||||
return res
|
return res
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def listBoolDisjunction(self, input):
|
def listBoolDisjunction(self, input: List[bool]) -> bool:
|
||||||
# type: (List[bool]) -> bool
|
|
||||||
res = False
|
res = False
|
||||||
for x in input:
|
for x in input:
|
||||||
res = res or x
|
res = res or x
|
||||||
return res
|
return res
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def tupleIntSumReturnTuple(self, input):
|
def tupleIntSumReturnTuple(self, input: Tuple[int, int, int]) -> Tuple[Tuple[int, int, int], int]:
|
||||||
# type: (Tuple[int, int, int]) -> Tuple[Tuple[int, int, int], int]
|
|
||||||
sum = 0
|
sum = 0
|
||||||
for x in input:
|
for x in input:
|
||||||
sum += x
|
sum += x
|
||||||
return (input, sum)
|
return (input, sum)
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def optionalIntIsNone(self, input):
|
def optionalIntIsNone(self, input: Optional[int]) -> bool:
|
||||||
# type: (Optional[int]) -> bool
|
|
||||||
return input is None
|
return input is None
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def intEq0None(self, input):
|
def intEq0None(self, input: int) -> Optional[int]:
|
||||||
# type: (int) -> Optional[int]
|
|
||||||
if input == 0:
|
if input == 0:
|
||||||
return None
|
return None
|
||||||
return input
|
return input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def str3Concat(self, input):
|
def str3Concat(self, input: str) -> str:
|
||||||
# type: (str) -> str
|
|
||||||
return input + input + input
|
return input + input + input
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
|
|
@ -113,8 +98,7 @@ class Test(torch.jit.ScriptModule):
|
||||||
return torch.tensor([int(input.item())])[0]
|
return torch.tensor([int(input.item())])[0]
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def testAliasWithOffset(self):
|
def testAliasWithOffset(self) -> List[Tensor]:
|
||||||
# type: () -> List[Tensor]
|
|
||||||
x = torch.tensor([100, 200])
|
x = torch.tensor([100, 200])
|
||||||
a = [x[0], x[1]]
|
a = [x[0], x[1]]
|
||||||
return a
|
return a
|
||||||
|
|
@ -128,8 +112,7 @@ class Test(torch.jit.ScriptModule):
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def conv2d(self, x, w, toChannelsLast):
|
def conv2d(self, x: Tensor, w: Tensor, toChannelsLast: bool) -> Tensor:
|
||||||
# type: (Tensor, Tensor, bool) -> Tensor
|
|
||||||
r = torch.nn.functional.conv2d(x, w)
|
r = torch.nn.functional.conv2d(x, w)
|
||||||
if (toChannelsLast):
|
if (toChannelsLast):
|
||||||
r = r.contiguous(memory_format=torch.channels_last)
|
r = r.contiguous(memory_format=torch.channels_last)
|
||||||
|
|
@ -138,18 +121,15 @@ class Test(torch.jit.ScriptModule):
|
||||||
return r
|
return r
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def contiguous(self, x):
|
def contiguous(self, x: Tensor) -> Tensor:
|
||||||
# type: (Tensor) -> Tensor
|
|
||||||
return x.contiguous()
|
return x.contiguous()
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def contiguousChannelsLast(self, x):
|
def contiguousChannelsLast(self, x: Tensor) -> Tensor:
|
||||||
# type: (Tensor) -> Tensor
|
|
||||||
return x.contiguous(memory_format=torch.channels_last)
|
return x.contiguous(memory_format=torch.channels_last)
|
||||||
|
|
||||||
@torch.jit.script_method
|
@torch.jit.script_method
|
||||||
def contiguousChannelsLast3d(self, x):
|
def contiguousChannelsLast3d(self, x: Tensor) -> Tensor:
|
||||||
# type: (Tensor) -> Tensor
|
|
||||||
return x.contiguous(memory_format=torch.channels_last_3d)
|
return x.contiguous(memory_format=torch.channels_last_3d)
|
||||||
|
|
||||||
scriptAndSave(Test(), "test.pt")
|
scriptAndSave(Test(), "test.pt")
|
||||||
|
|
|
||||||
|
|
@ -1,85 +1,69 @@
|
||||||
def forward(self, input):
|
def forward(self, input):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def eqBool(self, input):
|
def eqBool(self, input: bool) -> bool:
|
||||||
# type: (bool) -> bool
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
def eqInt(self, input):
|
def eqInt(self, input: int) -> int:
|
||||||
# type: (int) -> int
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
def eqFloat(self, input):
|
def eqFloat(self, input: float) -> float:
|
||||||
# type: (float) -> float
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
def eqStr(self, input):
|
def eqStr(self, input: str) -> str:
|
||||||
# type: (str) -> str
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
def eqTensor(self, input):
|
def eqTensor(self, input: Tensor) -> Tensor:
|
||||||
# type: (Tensor) -> Tensor
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
def eqDictStrKeyIntValue(self, input):
|
def eqDictStrKeyIntValue(self, input: Dict[str, int]) -> Dict[str, int]:
|
||||||
# type: (Dict[str, int]) -> Dict[str, int]
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
def eqDictIntKeyIntValue(self, input):
|
def eqDictIntKeyIntValue(self, input: Dict[int, int]) -> Dict[int, int]:
|
||||||
# type: (Dict[int, int]) -> Dict[int, int]
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
def eqDictFloatKeyIntValue(self, input):
|
def eqDictFloatKeyIntValue(self, input: Dict[float, int]) -> Dict[float, int]:
|
||||||
# type: (Dict[float, int]) -> Dict[float, int]
|
|
||||||
return input
|
return input
|
||||||
|
|
||||||
def listIntSumReturnTuple(self, input):
|
def listIntSumReturnTuple(self, input: List[int]) -> Tuple[List[int], int]:
|
||||||
# type: (List[int]) -> Tuple[List[int], int]
|
|
||||||
sum = 0
|
sum = 0
|
||||||
for x in input:
|
for x in input:
|
||||||
sum += x
|
sum += x
|
||||||
return (input, sum)
|
return (input, sum)
|
||||||
|
|
||||||
def listBoolConjunction(self, input):
|
def listBoolConjunction(self, input: List[bool]) -> bool:
|
||||||
# type: (List[bool]) -> bool
|
|
||||||
res = True
|
res = True
|
||||||
for x in input:
|
for x in input:
|
||||||
res = res and x
|
res = res and x
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def listBoolDisjunction(self, input):
|
def listBoolDisjunction(self, input: List[bool]) -> bool:
|
||||||
# type: (List[bool]) -> bool
|
|
||||||
res = False
|
res = False
|
||||||
for x in input:
|
for x in input:
|
||||||
res = res or x
|
res = res or x
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def tupleIntSumReturnTuple(self, input):
|
def tupleIntSumReturnTuple(self, input: Tuple[int, int, int]) -> Tuple[Tuple[int, int, int], int]:
|
||||||
# type: (Tuple[int, int, int]) -> Tuple[Tuple[int, int, int], int]
|
|
||||||
sum = 0
|
sum = 0
|
||||||
for x in input:
|
for x in input:
|
||||||
sum += x
|
sum += x
|
||||||
return (input, sum)
|
return (input, sum)
|
||||||
|
|
||||||
def optionalIntIsNone(self, input):
|
def optionalIntIsNone(self, input: Optional[int]) -> bool:
|
||||||
# type: (Optional[int]) -> bool
|
|
||||||
return input is None
|
return input is None
|
||||||
|
|
||||||
def intEq0None(self, input):
|
def intEq0None(self, input: int) -> Optional[int]:
|
||||||
# type: (int) -> Optional[int]
|
|
||||||
if input == 0:
|
if input == 0:
|
||||||
return None
|
return None
|
||||||
return input
|
return input
|
||||||
|
|
||||||
def str3Concat(self, input):
|
def str3Concat(self, input: str) -> str:
|
||||||
# type: (str) -> str
|
|
||||||
return input + input + input
|
return input + input + input
|
||||||
|
|
||||||
def newEmptyShapeWithItem(self, input):
|
def newEmptyShapeWithItem(self, input):
|
||||||
return torch.tensor([int(input.item())])[0]
|
return torch.tensor([int(input.item())])[0]
|
||||||
|
|
||||||
def testAliasWithOffset(self):
|
def testAliasWithOffset(self) -> List[Tensor]:
|
||||||
# type: () -> List[Tensor]
|
|
||||||
x = torch.tensor([100, 200])
|
x = torch.tensor([100, 200])
|
||||||
a = [x[0], x[1]]
|
a = [x[0], x[1]]
|
||||||
return a
|
return a
|
||||||
|
|
@ -91,8 +75,7 @@ def testNonContiguous(self):
|
||||||
assert x[1] == 300
|
assert x[1] == 300
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def conv2d(self, x, w, toChannelsLast):
|
def conv2d(self, x: Tensor, w: Tensor, toChannelsLast: bool) -> Tensor:
|
||||||
# type: (Tensor, Tensor, bool) -> Tensor
|
|
||||||
r = torch.conv2d(x, w)
|
r = torch.conv2d(x, w)
|
||||||
if (toChannelsLast):
|
if (toChannelsLast):
|
||||||
# memory_format=torch.channels_last
|
# memory_format=torch.channels_last
|
||||||
|
|
@ -101,16 +84,13 @@ def conv2d(self, x, w, toChannelsLast):
|
||||||
r = r.contiguous()
|
r = r.contiguous()
|
||||||
return r
|
return r
|
||||||
|
|
||||||
def contiguous(self, x):
|
def contiguous(self, x: Tensor) -> Tensor:
|
||||||
# type: (Tensor) -> Tensor
|
|
||||||
return x.contiguous()
|
return x.contiguous()
|
||||||
|
|
||||||
def contiguousChannelsLast(self, x):
|
def contiguousChannelsLast(self, x: Tensor) -> Tensor:
|
||||||
# type: (Tensor) -> Tensor
|
|
||||||
# memory_format=torch.channels_last
|
# memory_format=torch.channels_last
|
||||||
return x.contiguous(memory_format=2)
|
return x.contiguous(memory_format=2)
|
||||||
|
|
||||||
def contiguousChannelsLast3d(self, x):
|
def contiguousChannelsLast3d(self, x: Tensor) -> Tensor:
|
||||||
# type: (Tensor) -> Tensor
|
|
||||||
# memory_format=torch.channels_last_3d
|
# memory_format=torch.channels_last_3d
|
||||||
return x.contiguous(memory_format=3)
|
return x.contiguous(memory_format=3)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue
Block a user