mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
[ONNX] Bump ORT version to 1.15.0 (#102248)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102248 Approved by: https://github.com/abock
This commit is contained in:
parent
3c77310752
commit
053dff1111
|
|
@ -16,7 +16,7 @@ pip_install \
|
||||||
onnx==1.14.0
|
onnx==1.14.0
|
||||||
|
|
||||||
pip_install \
|
pip_install \
|
||||||
onnxruntime==1.14.0 \
|
onnxruntime==1.15.0 \
|
||||||
parameterized==0.8.1 \
|
parameterized==0.8.1 \
|
||||||
pytest-cov==4.0.0 \
|
pytest-cov==4.0.0 \
|
||||||
pytest-subtests==0.10.0 \
|
pytest-subtests==0.10.0 \
|
||||||
|
|
|
||||||
|
|
@ -406,21 +406,6 @@ EXPECTED_SKIPS_OR_FAILS: Tuple[onnx_test_common.DecorateMeta, ...] = (
|
||||||
dtypes=(torch.uint8, torch.int8, torch.int16,),
|
dtypes=(torch.uint8, torch.int8, torch.int16,),
|
||||||
reason=onnx_test_common.reason_onnx_script_does_not_support("Add", "int8, int16"),
|
reason=onnx_test_common.reason_onnx_script_does_not_support("Add", "int8, int16"),
|
||||||
),
|
),
|
||||||
xfail(
|
|
||||||
"new_full",
|
|
||||||
dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES + onnx_test_common.FLOAT_TYPES,
|
|
||||||
reason=onnx_test_common.reason_onnx_runtime_does_not_support("new_full", "ORT 1.15 will support"),
|
|
||||||
),
|
|
||||||
xfail(
|
|
||||||
"new_ones",
|
|
||||||
dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES + onnx_test_common.FLOAT_TYPES,
|
|
||||||
reason=onnx_test_common.reason_onnx_runtime_does_not_support("new_ones", "ORT 1.15 will support"),
|
|
||||||
),
|
|
||||||
xfail(
|
|
||||||
"new_zeros",
|
|
||||||
dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES + onnx_test_common.FLOAT_TYPES,
|
|
||||||
reason=onnx_test_common.reason_onnx_runtime_does_not_support("new_zeros", "ORT 1.15 will support"),
|
|
||||||
),
|
|
||||||
xfail(
|
xfail(
|
||||||
"nn.functional.adaptive_avg_pool1d",
|
"nn.functional.adaptive_avg_pool1d",
|
||||||
reason=onnx_test_common.reason_onnx_script_does_not_support("aten.mean.dim"),
|
reason=onnx_test_common.reason_onnx_script_does_not_support("aten.mean.dim"),
|
||||||
|
|
|
||||||
|
|
@ -100,6 +100,8 @@ EXPECTED_SKIPS_OR_FAILS: Tuple[onnx_test_common.DecorateMeta, ...] = (
|
||||||
skip("nn.functional.scaled_dot_product_attention", reason="fixme: ORT crashes on Windows, segfaults randomly on Linux"),
|
skip("nn.functional.scaled_dot_product_attention", reason="fixme: ORT crashes on Windows, segfaults randomly on Linux"),
|
||||||
skip("sqrt", dtypes=onnx_test_common.BOOL_TYPES, reason=onnx_test_common.reason_onnx_does_not_support("Sqrt")),
|
skip("sqrt", dtypes=onnx_test_common.BOOL_TYPES, reason=onnx_test_common.reason_onnx_does_not_support("Sqrt")),
|
||||||
skip("stft", opsets=[onnx_test_common.opsets_before(17)], reason=onnx_test_common.reason_onnx_does_not_support("STFT")),
|
skip("stft", opsets=[onnx_test_common.opsets_before(17)], reason=onnx_test_common.reason_onnx_does_not_support("STFT")),
|
||||||
|
xfail("stft",
|
||||||
|
reason=onnx_test_common.reason_onnx_runtime_does_not_support("STFT", "Regression on ORT=1.15 4 percent difference")),
|
||||||
skip("tile", opsets=[onnx_test_common.opsets_before(13)], reason=onnx_test_common.reason_onnx_does_not_support("Tile")),
|
skip("tile", opsets=[onnx_test_common.opsets_before(13)], reason=onnx_test_common.reason_onnx_does_not_support("Tile")),
|
||||||
xfail("unflatten", opsets=[onnx_test_common.opsets_before(13)], reason="Helper function is needed to support legacy ops."),
|
xfail("unflatten", opsets=[onnx_test_common.opsets_before(13)], reason="Helper function is needed to support legacy ops."),
|
||||||
)
|
)
|
||||||
|
|
|
||||||
|
|
@ -650,14 +650,6 @@ class TestONNXRuntime(onnx_test_common._TestONNXRuntime):
|
||||||
|
|
||||||
self.run_test(model, (x, y, z), input_names=("x", "y", "z"))
|
self.run_test(model, (x, y, z), input_names=("x", "y", "z"))
|
||||||
self.run_test(model, (x,), {"y": y, "z": z}, input_names=("x", "y", "z"))
|
self.run_test(model, (x,), {"y": y, "z": z}, input_names=("x", "y", "z"))
|
||||||
|
|
||||||
# Requires input_names to be set so that we can feed the inputs properly into ORT.
|
|
||||||
# TODO: Export default values as ONNX initializers, then this should not raise.
|
|
||||||
# https://msdata.visualstudio.com/Vienna/_workitems/edit/969268
|
|
||||||
# Default values are accessible via FunctionSchema.
|
|
||||||
with self.assertRaisesRegex(
|
|
||||||
ValueError, "Model requires 3 inputs. Input Feed contains 2"
|
|
||||||
):
|
|
||||||
self.run_test(model, (x,), {"y": y}, input_names=("x", "y"))
|
self.run_test(model, (x,), {"y": y}, input_names=("x", "y"))
|
||||||
|
|
||||||
for example_inputs, example_kwargs in (
|
for example_inputs, example_kwargs in (
|
||||||
|
|
@ -742,14 +734,13 @@ class TestONNXRuntime(onnx_test_common._TestONNXRuntime):
|
||||||
y = torch.randn(2, 3)
|
y = torch.randn(2, 3)
|
||||||
model = torch.jit.script(Model())
|
model = torch.jit.script(Model())
|
||||||
|
|
||||||
# TODO: Export default values as ONNX initializers, then this should not raise.
|
# Optional supports None inputs
|
||||||
# https://msdata.visualstudio.com/Vienna/_workitems/edit/969268
|
|
||||||
# Default values are accessible via FunctionSchema.
|
|
||||||
with self.assertRaisesRegex(
|
|
||||||
ValueError, "Model requires 2 inputs. Input Feed contains 1"
|
|
||||||
):
|
|
||||||
self.run_test(model, (x,))
|
self.run_test(model, (x,))
|
||||||
self.run_test(model, (), {"y": y})
|
# NOTE: default value is not supported on ONNX, so torch and ONNX has
|
||||||
|
# different behavior
|
||||||
|
with self.assertRaisesRegex(AssertionError, "Tensor-likes are not close!"):
|
||||||
|
self.run_test(model, (), {"y": y}, input_names=["y"])
|
||||||
|
|
||||||
self.run_test(model, (x, y))
|
self.run_test(model, (x, y))
|
||||||
self.run_test(model, (), {"x": x, "y": y}, input_names=("x", "y"))
|
self.run_test(model, (), {"x": x, "y": y}, input_names=("x", "y"))
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue
Block a user