mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Revert "[dtensor] move tensor constructors to a separate module (#133129)"
This reverts commit e890d888d9.
Reverted https://github.com/pytorch/pytorch/pull/133129 on behalf of https://github.com/fbgheith due to breaking internal tests ([comment](https://github.com/pytorch/pytorch/pull/133129#issuecomment-2285090400))
This commit is contained in:
parent
89670d5bdd
commit
00aa086298
|
|
@ -1,19 +1,21 @@
|
|||
# mypy: allow-untyped-defs
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates
|
||||
from typing import Optional, Sequence
|
||||
|
||||
# Import all builtin dist tensor ops
|
||||
import torch
|
||||
import torch.distributed._tensor.ops as _ops # force import all built-in dtensor ops
|
||||
from torch.distributed._tensor._tensor_constructors import (
|
||||
empty,
|
||||
full,
|
||||
ones,
|
||||
rand,
|
||||
randn,
|
||||
zeros,
|
||||
)
|
||||
import torch.distributed._tensor.ops
|
||||
import torch.distributed._tensor.random as random
|
||||
from torch.distributed._tensor._utils import compute_local_shape
|
||||
from torch.distributed._tensor.api import distribute_module, distribute_tensor, DTensor
|
||||
from torch.distributed._tensor.placement_types import Partial, Replicate, Shard
|
||||
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
|
||||
from torch.distributed._tensor.ops.utils import normalize_to_torch_size
|
||||
from torch.distributed._tensor.placement_types import (
|
||||
Partial,
|
||||
Placement,
|
||||
Replicate,
|
||||
Shard,
|
||||
)
|
||||
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
|
||||
from torch.optim.optimizer import (
|
||||
_foreach_supported_types as _optim_foreach_supported_types,
|
||||
)
|
||||
|
|
@ -32,12 +34,6 @@ __all__ = [
|
|||
"Shard",
|
||||
"Replicate",
|
||||
"Partial",
|
||||
"ones",
|
||||
"empty",
|
||||
"full",
|
||||
"rand",
|
||||
"randn",
|
||||
"zeros",
|
||||
]
|
||||
|
||||
|
||||
|
|
@ -48,3 +44,328 @@ if DTensor not in _optim_foreach_supported_types:
|
|||
|
||||
if DTensor not in _util_foreach_supported_types:
|
||||
_util_foreach_supported_types.append(DTensor)
|
||||
|
||||
|
||||
def _dtensor_init_helper(
|
||||
init_op,
|
||||
size: torch.Size,
|
||||
device_mesh=None,
|
||||
placements=None,
|
||||
**kwargs,
|
||||
) -> DTensor:
|
||||
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
|
||||
|
||||
# if device_mesh is None, use the one from mesh resources
|
||||
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
|
||||
kwargs["device"] = device_mesh.device_type
|
||||
|
||||
# set default placements to replicated if not specified
|
||||
placements = placements or tuple(Replicate() for _ in range(device_mesh.ndim))
|
||||
|
||||
# check device_mesh againts placements
|
||||
assert device_mesh.ndim == len(
|
||||
placements
|
||||
), "mesh dimension does not match the length of placements"
|
||||
|
||||
assert kwargs["layout"] == torch.strided, "layout value not supported!"
|
||||
torch_stride = torch._prims_common.make_contiguous_strides_for(size)
|
||||
|
||||
# get local tensor shape
|
||||
local_shape = compute_local_shape(size, device_mesh, placements)
|
||||
# initialize the local tensor
|
||||
if init_op == torch.full:
|
||||
fill_value = kwargs.pop("fill_value", 0)
|
||||
local_tensor = init_op(local_shape, fill_value, **kwargs)
|
||||
elif init_op == torch.rand or init_op == torch.randn:
|
||||
# this tensor meta is not used except `shape`
|
||||
dtype = kwargs.get("dtype", torch.get_default_dtype())
|
||||
|
||||
tensor_meta = TensorMeta(size, (0,), dtype)
|
||||
spec = DTensorSpec(device_mesh, placements, tensor_meta=tensor_meta)
|
||||
|
||||
if random.is_rng_supported_mesh(device_mesh) and not random._rng_tracker:
|
||||
random._rng_tracker = random.OffsetBasedRNGTracker()
|
||||
|
||||
assert random._rng_tracker is not None
|
||||
with random._rng_tracker._distribute_region(spec):
|
||||
local_tensor = init_op(local_shape, **kwargs)
|
||||
else:
|
||||
local_tensor = init_op(local_shape, **kwargs)
|
||||
|
||||
spec = DTensorSpec(
|
||||
device_mesh,
|
||||
tuple(placements),
|
||||
tensor_meta=TensorMeta(
|
||||
size,
|
||||
torch_stride,
|
||||
local_tensor.dtype,
|
||||
),
|
||||
)
|
||||
|
||||
return DTensor(
|
||||
local_tensor,
|
||||
spec,
|
||||
requires_grad=kwargs["requires_grad"],
|
||||
)
|
||||
|
||||
|
||||
def ones(
|
||||
*size,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
requires_grad: bool = False,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with the scalar value 1, with the shape defined
|
||||
by the variable argument ``size``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.ones,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def empty(
|
||||
*size,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
requires_grad: bool = False,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with uninitialized data. The shape of the :class:`DTensor`
|
||||
is defined by the variable argument ``size``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: empty(1,2,3..) or empty([1,2,3..]) or empty((1,2,3..))
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).\
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned :class:`DTensor`.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.empty,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def full(
|
||||
size,
|
||||
fill_value,
|
||||
*,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
requires_grad: bool = False,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with ``fill_value``. The scalar value type should match
|
||||
``device_mesh.device_type``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
||||
fill_value(Scalar): the value to fill the output tensor with.
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks.
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.full,
|
||||
torch_size,
|
||||
fill_value=fill_value,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def rand(
|
||||
*size,
|
||||
requires_grad: bool = False,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with random numbers from a uniform distribution
|
||||
on the interval ``[0, 1)``. The shape of the tensor is defined by the variable
|
||||
argument ``size``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks.
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.rand,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def randn(
|
||||
*size,
|
||||
requires_grad: bool = False,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with random numbers from a normal distribution
|
||||
with mean 0 and variance 1. The shape of the tensor is defined by the variable
|
||||
argument ``size``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks.
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.randn,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def zeros(
|
||||
*size,
|
||||
requires_grad: bool = False,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with the scalar value 0.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: zeros(1,2,3..) or zeros([1,2,3..]) or zeros((1,2,3..))
|
||||
Keyword args:
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned :class:`DTensor`.
|
||||
Default: ``torch.strided``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.zeros,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -1,334 +0,0 @@
|
|||
from typing import Optional, Sequence
|
||||
|
||||
import torch
|
||||
import torch.distributed._tensor.random as random
|
||||
from torch.distributed._tensor._utils import compute_local_shape
|
||||
from torch.distributed._tensor.api import DTensor
|
||||
from torch.distributed._tensor.ops.utils import normalize_to_torch_size
|
||||
from torch.distributed._tensor.placement_types import Placement, Replicate
|
||||
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh
|
||||
|
||||
|
||||
def _dtensor_init_helper( # type: ignore[no-untyped-def]
|
||||
init_op,
|
||||
size: torch.Size,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
**kwargs,
|
||||
) -> DTensor:
|
||||
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
|
||||
|
||||
# if device_mesh is None, use the one from mesh resources
|
||||
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
|
||||
kwargs["device"] = device_mesh.device_type
|
||||
|
||||
# set default placements to replicated if not specified
|
||||
placements = placements or tuple(Replicate() for _ in range(device_mesh.ndim))
|
||||
|
||||
# check device_mesh againts placements
|
||||
assert device_mesh.ndim == len(
|
||||
placements
|
||||
), "mesh dimension does not match the length of placements"
|
||||
|
||||
assert kwargs["layout"] == torch.strided, "layout value not supported!"
|
||||
torch_stride = torch._prims_common.make_contiguous_strides_for(size)
|
||||
|
||||
# get local tensor shape
|
||||
local_shape = compute_local_shape(size, device_mesh, placements)
|
||||
# initialize the local tensor
|
||||
if init_op == torch.full:
|
||||
fill_value = kwargs.pop("fill_value", 0)
|
||||
local_tensor = init_op(local_shape, fill_value, **kwargs)
|
||||
elif init_op == torch.rand or init_op == torch.randn:
|
||||
# this tensor meta is not used except `shape`
|
||||
dtype = kwargs.get("dtype", torch.get_default_dtype())
|
||||
|
||||
tensor_meta = TensorMeta(size, (0,), dtype)
|
||||
spec = DTensorSpec(device_mesh, tuple(placements), tensor_meta=tensor_meta)
|
||||
|
||||
if random.is_rng_supported_mesh(device_mesh) and not random._rng_tracker:
|
||||
random._rng_tracker = random.OffsetBasedRNGTracker()
|
||||
|
||||
assert random._rng_tracker is not None
|
||||
with random._rng_tracker._distribute_region(spec):
|
||||
local_tensor = init_op(local_shape, **kwargs)
|
||||
else:
|
||||
local_tensor = init_op(local_shape, **kwargs)
|
||||
|
||||
spec = DTensorSpec(
|
||||
device_mesh,
|
||||
tuple(placements),
|
||||
tensor_meta=TensorMeta(
|
||||
size,
|
||||
torch_stride,
|
||||
local_tensor.dtype,
|
||||
),
|
||||
)
|
||||
|
||||
return DTensor(
|
||||
local_tensor,
|
||||
spec,
|
||||
requires_grad=kwargs["requires_grad"],
|
||||
)
|
||||
|
||||
|
||||
def ones( # type: ignore[no-untyped-def]
|
||||
*size,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
requires_grad: bool = False,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with the scalar value 1, with the shape defined
|
||||
by the variable argument ``size``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.ones,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def empty( # type: ignore[no-untyped-def]
|
||||
*size,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
requires_grad: bool = False,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with uninitialized data. The shape of the :class:`DTensor`
|
||||
is defined by the variable argument ``size``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: empty(1,2,3..) or empty([1,2,3..]) or empty((1,2,3..))
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).\
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned :class:`DTensor`.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.empty,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def full( # type: ignore[no-untyped-def]
|
||||
size,
|
||||
fill_value,
|
||||
*,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
requires_grad: bool = False,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with ``fill_value``. The scalar value type should match
|
||||
``device_mesh.device_type``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
||||
fill_value(Scalar): the value to fill the output tensor with.
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks.
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.full,
|
||||
torch_size,
|
||||
fill_value=fill_value,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def rand( # type: ignore[no-untyped-def]
|
||||
*size,
|
||||
requires_grad: bool = False,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with random numbers from a uniform distribution
|
||||
on the interval ``[0, 1)``. The shape of the tensor is defined by the variable
|
||||
argument ``size``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks.
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.rand,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def randn( # type: ignore[no-untyped-def]
|
||||
*size,
|
||||
requires_grad: bool = False,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with random numbers from a normal distribution
|
||||
with mean 0 and variance 1. The shape of the tensor is defined by the variable
|
||||
argument ``size``.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
||||
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
||||
Default: ``torch.strided``.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks.
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.randn,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
||||
|
||||
def zeros( # type: ignore[no-untyped-def]
|
||||
*size,
|
||||
requires_grad: bool = False,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
layout: torch.layout = torch.strided,
|
||||
device_mesh: Optional[DeviceMesh] = None,
|
||||
placements: Optional[Sequence[Placement]] = None,
|
||||
) -> DTensor:
|
||||
"""
|
||||
Returns a :class:`DTensor` filled with the scalar value 0.
|
||||
|
||||
Args:
|
||||
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
||||
Can be a variable number of arguments or a collection like a list or tuple.
|
||||
E.g.: zeros(1,2,3..) or zeros([1,2,3..]) or zeros((1,2,3..))
|
||||
Keyword args:
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned :class:`DTensor`. Default: ``False``.
|
||||
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
||||
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
||||
layout (:class:`torch.layout`, optional): the desired layout of returned :class:`DTensor`.
|
||||
Default: ``torch.strided``.
|
||||
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks
|
||||
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
||||
|
||||
Returns:
|
||||
A :class:`DTensor` object on each rank
|
||||
"""
|
||||
torch_size = normalize_to_torch_size(size)
|
||||
|
||||
return _dtensor_init_helper(
|
||||
torch.zeros,
|
||||
torch_size,
|
||||
dtype=dtype,
|
||||
layout=layout,
|
||||
requires_grad=requires_grad,
|
||||
device_mesh=device_mesh,
|
||||
placements=placements,
|
||||
)
|
||||
|
|
@ -1,4 +1,5 @@
|
|||
# mypy: allow-untyped-defs
|
||||
from torch.distributed._tensor.api import DTensor
|
||||
from torch.distributed._tensor.debug.comm_mode import CommDebugMode
|
||||
from torch.distributed._tensor.debug.visualize_sharding import visualize_sharding
|
||||
|
||||
|
|
@ -12,8 +13,6 @@ def _get_sharding_prop_cache_info():
|
|||
This would return a named tuple showing hits, misses, maxsize and cursize of the sharding
|
||||
propagator cache.
|
||||
"""
|
||||
from torch.distributed._tensor.api import DTensor
|
||||
|
||||
return (
|
||||
DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding.cache_info() # type:ignore[attr-defined]
|
||||
)
|
||||
|
|
|
|||
|
|
@ -11,10 +11,10 @@ from torch.distributed._tensor import (
|
|||
distribute_module,
|
||||
distribute_tensor,
|
||||
DTensor,
|
||||
Placement,
|
||||
Replicate,
|
||||
Shard,
|
||||
)
|
||||
from torch.distributed._tensor.placement_types import Placement
|
||||
|
||||
|
||||
__all__ = [
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user