postgres/src/backend/executor/functions.c
Tom Lane dbd437e670 Fix oversight in commit 0dca5d68d.
As coded, fmgr_sql() would get an assertion failure for a SQL function
that has an empty body and is declared to return some type other than
VOID.  Typically you'd never get that far because fmgr_sql_validator()
would reject such a definition (I suspect that's how come I managed to
miss the bug).  But if check_function_bodies is off or the function is
polymorphic, the validation check wouldn't get made.

Reported-by: Alexander Lakhin <exclusion@gmail.com>
Author: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/0fde377a-3870-4d18-946a-ce008ee5bb88@gmail.com
2025-04-03 16:03:12 -04:00

2573 lines
77 KiB
C

/*-------------------------------------------------------------------------
*
* functions.c
* Execution of SQL-language functions
*
* Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/functions.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/xact.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/functions.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_coerce.h"
#include "parser/parse_collate.h"
#include "parser/parse_func.h"
#include "rewrite/rewriteHandler.h"
#include "storage/proc.h"
#include "tcop/utility.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/funccache.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
/*
* Specialized DestReceiver for collecting query output in a SQL function
*/
typedef struct
{
DestReceiver pub; /* publicly-known function pointers */
Tuplestorestate *tstore; /* where to put result tuples */
MemoryContext cxt; /* context containing tstore */
JunkFilter *filter; /* filter to convert tuple type */
} DR_sqlfunction;
/*
* We have an execution_state record for each query in a function. Each
* record references a plantree for its query. If the query is currently in
* F_EXEC_RUN state then there's a QueryDesc too.
*
* The "next" fields chain together all the execution_state records generated
* from a single original parsetree. (There will only be more than one in
* case of rule expansion of the original parsetree.)
*/
typedef enum
{
F_EXEC_START, F_EXEC_RUN, F_EXEC_DONE,
} ExecStatus;
typedef struct execution_state
{
struct execution_state *next;
ExecStatus status;
bool setsResult; /* true if this query produces func's result */
bool lazyEval; /* true if should fetch one row at a time */
PlannedStmt *stmt; /* plan for this query */
QueryDesc *qd; /* null unless status == RUN */
} execution_state;
/*
* Data associated with a SQL-language function is kept in three main
* data structures:
*
* 1. SQLFunctionHashEntry is a long-lived (potentially session-lifespan)
* struct that holds all the info we need out of the function's pg_proc row.
* In addition it holds pointers to CachedPlanSource(s) that manage creation
* of plans for the query(s) within the function. A SQLFunctionHashEntry is
* potentially shared across multiple concurrent executions of the function,
* so it must contain no execution-specific state; but its use_count must
* reflect the number of SQLFunctionLink structs pointing at it.
* If the function's pg_proc row is updated, we throw away and regenerate
* the SQLFunctionHashEntry and subsidiary data. (Also note that if the
* function is polymorphic or used as a trigger, there is a separate
* SQLFunctionHashEntry for each usage, so that we need consider only one
* set of relevant data types.) The struct itself is in memory managed by
* funccache.c, and its subsidiary data is kept in one of two contexts:
* * pcontext ("parse context") holds the raw parse trees or Query trees
* that we read from the pg_proc row. These will be converted to
* CachedPlanSources as they are needed. Once the last one is converted,
* pcontext can be freed.
* * hcontext ("hash context") holds everything else belonging to the
* SQLFunctionHashEntry.
*
* 2. SQLFunctionCache lasts for the duration of a single execution of
* the SQL function. (In "lazyEval" mode, this might span multiple calls of
* fmgr_sql.) It holds a reference to the CachedPlan for the current query,
* and other data that is execution-specific. The SQLFunctionCache itself
* as well as its subsidiary data are kept in fcontext ("function context"),
* which we free at completion. In non-returnsSet mode, this is just a child
* of the call-time context. In returnsSet mode, it is made a child of the
* FmgrInfo's fn_mcxt so that it will survive between fmgr_sql calls.
*
* 3. SQLFunctionLink is a tiny struct that just holds pointers to
* the SQLFunctionHashEntry and the current SQLFunctionCache (if any).
* It is pointed to by the fn_extra field of the FmgrInfo struct, and is
* always allocated in the FmgrInfo's fn_mcxt. Its purpose is to reduce
* the cost of repeat lookups of the SQLFunctionHashEntry.
*/
typedef struct SQLFunctionHashEntry
{
CachedFunction cfunc; /* fields managed by funccache.c */
char *fname; /* function name (for error msgs) */
char *src; /* function body text (for error msgs) */
SQLFunctionParseInfoPtr pinfo; /* data for parser callback hooks */
Oid rettype; /* actual return type */
int16 typlen; /* length of the return type */
bool typbyval; /* true if return type is pass by value */
bool returnsSet; /* true if returning multiple rows */
bool returnsTuple; /* true if returning whole tuple result */
bool readonly_func; /* true to run in "read only" mode */
char prokind; /* prokind from pg_proc row */
TupleDesc rettupdesc; /* result tuple descriptor */
List *source_list; /* RawStmts or Queries read from pg_proc */
int num_queries; /* original length of source_list */
bool raw_source; /* true if source_list contains RawStmts */
List *plansource_list; /* CachedPlanSources for fn's queries */
MemoryContext pcontext; /* memory context holding source_list */
MemoryContext hcontext; /* memory context holding all else */
} SQLFunctionHashEntry;
typedef struct SQLFunctionCache
{
SQLFunctionHashEntry *func; /* associated SQLFunctionHashEntry */
bool lazyEvalOK; /* true if lazyEval is safe */
bool shutdown_reg; /* true if registered shutdown callback */
bool lazyEval; /* true if using lazyEval for result query */
ParamListInfo paramLI; /* Param list representing current args */
Tuplestorestate *tstore; /* where we accumulate result tuples */
JunkFilter *junkFilter; /* will be NULL if function returns VOID */
/*
* While executing a particular query within the function, cplan is the
* CachedPlan we've obtained for that query, and eslist is a list of
* execution_state records for the individual plans within the CachedPlan.
* next_query_index is the 0-based index of the next CachedPlanSource to
* get a CachedPlan from.
*/
CachedPlan *cplan; /* Plan for current query, if any */
ResourceOwner cowner; /* CachedPlan is registered with this owner */
execution_state *eslist; /* execution_state records */
int next_query_index; /* index of next CachedPlanSource to run */
/* if positive, this is the index of the query we're processing */
int error_query_index;
MemoryContext fcontext; /* memory context holding this struct and all
* subsidiary data */
} SQLFunctionCache;
typedef SQLFunctionCache *SQLFunctionCachePtr;
/* Struct pointed to by FmgrInfo.fn_extra for a SQL function */
typedef struct SQLFunctionLink
{
/* Permanent pointer to associated SQLFunctionHashEntry */
SQLFunctionHashEntry *func;
/* Transient pointer to SQLFunctionCache, used only if returnsSet */
SQLFunctionCache *fcache;
/* Callback to release our use-count on the SQLFunctionHashEntry */
MemoryContextCallback mcb;
} SQLFunctionLink;
/* non-export function prototypes */
static Node *sql_fn_param_ref(ParseState *pstate, ParamRef *pref);
static Node *sql_fn_post_column_ref(ParseState *pstate,
ColumnRef *cref, Node *var);
static Node *sql_fn_make_param(SQLFunctionParseInfoPtr pinfo,
int paramno, int location);
static Node *sql_fn_resolve_param_name(SQLFunctionParseInfoPtr pinfo,
const char *paramname, int location);
static SQLFunctionCache *init_sql_fcache(FunctionCallInfo fcinfo,
bool lazyEvalOK);
static bool init_execution_state(SQLFunctionCachePtr fcache);
static void prepare_next_query(SQLFunctionHashEntry *func);
static void sql_compile_callback(FunctionCallInfo fcinfo,
HeapTuple procedureTuple,
const CachedFunctionHashKey *hashkey,
CachedFunction *cfunc,
bool forValidator);
static void sql_delete_callback(CachedFunction *cfunc);
static void sql_postrewrite_callback(List *querytree_list, void *arg);
static void postquel_start(execution_state *es, SQLFunctionCachePtr fcache);
static bool postquel_getnext(execution_state *es, SQLFunctionCachePtr fcache);
static void postquel_end(execution_state *es);
static void postquel_sub_params(SQLFunctionCachePtr fcache,
FunctionCallInfo fcinfo);
static Datum postquel_get_single_result(TupleTableSlot *slot,
FunctionCallInfo fcinfo,
SQLFunctionCachePtr fcache,
MemoryContext resultcontext);
static void sql_compile_error_callback(void *arg);
static void sql_exec_error_callback(void *arg);
static void ShutdownSQLFunction(Datum arg);
static void RemoveSQLFunctionLink(void *arg);
static void check_sql_fn_statement(List *queryTreeList);
static bool check_sql_stmt_retval(List *queryTreeList,
Oid rettype, TupleDesc rettupdesc,
char prokind, bool insertDroppedCols);
static bool coerce_fn_result_column(TargetEntry *src_tle,
Oid res_type, int32 res_typmod,
bool tlist_is_modifiable,
List **upper_tlist,
bool *upper_tlist_nontrivial);
static List *get_sql_fn_result_tlist(List *queryTreeList);
static void sqlfunction_startup(DestReceiver *self, int operation, TupleDesc typeinfo);
static bool sqlfunction_receive(TupleTableSlot *slot, DestReceiver *self);
static void sqlfunction_shutdown(DestReceiver *self);
static void sqlfunction_destroy(DestReceiver *self);
/*
* Prepare the SQLFunctionParseInfo struct for parsing a SQL function body
*
* This includes resolving actual types of polymorphic arguments.
*
* call_expr can be passed as NULL, but then we will fail if there are any
* polymorphic arguments.
*/
SQLFunctionParseInfoPtr
prepare_sql_fn_parse_info(HeapTuple procedureTuple,
Node *call_expr,
Oid inputCollation)
{
SQLFunctionParseInfoPtr pinfo;
Form_pg_proc procedureStruct = (Form_pg_proc) GETSTRUCT(procedureTuple);
int nargs;
pinfo = (SQLFunctionParseInfoPtr) palloc0(sizeof(SQLFunctionParseInfo));
/* Function's name (only) can be used to qualify argument names */
pinfo->fname = pstrdup(NameStr(procedureStruct->proname));
/* Save the function's input collation */
pinfo->collation = inputCollation;
/*
* Copy input argument types from the pg_proc entry, then resolve any
* polymorphic types.
*/
pinfo->nargs = nargs = procedureStruct->pronargs;
if (nargs > 0)
{
Oid *argOidVect;
int argnum;
argOidVect = (Oid *) palloc(nargs * sizeof(Oid));
memcpy(argOidVect,
procedureStruct->proargtypes.values,
nargs * sizeof(Oid));
for (argnum = 0; argnum < nargs; argnum++)
{
Oid argtype = argOidVect[argnum];
if (IsPolymorphicType(argtype))
{
argtype = get_call_expr_argtype(call_expr, argnum);
if (argtype == InvalidOid)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("could not determine actual type of argument declared %s",
format_type_be(argOidVect[argnum]))));
argOidVect[argnum] = argtype;
}
}
pinfo->argtypes = argOidVect;
}
/*
* Collect names of arguments, too, if any
*/
if (nargs > 0)
{
Datum proargnames;
Datum proargmodes;
int n_arg_names;
bool isNull;
proargnames = SysCacheGetAttr(PROCNAMEARGSNSP, procedureTuple,
Anum_pg_proc_proargnames,
&isNull);
if (isNull)
proargnames = PointerGetDatum(NULL); /* just to be sure */
proargmodes = SysCacheGetAttr(PROCNAMEARGSNSP, procedureTuple,
Anum_pg_proc_proargmodes,
&isNull);
if (isNull)
proargmodes = PointerGetDatum(NULL); /* just to be sure */
n_arg_names = get_func_input_arg_names(proargnames, proargmodes,
&pinfo->argnames);
/* Paranoia: ignore the result if too few array entries */
if (n_arg_names < nargs)
pinfo->argnames = NULL;
}
else
pinfo->argnames = NULL;
return pinfo;
}
/*
* Parser setup hook for parsing a SQL function body.
*/
void
sql_fn_parser_setup(struct ParseState *pstate, SQLFunctionParseInfoPtr pinfo)
{
pstate->p_pre_columnref_hook = NULL;
pstate->p_post_columnref_hook = sql_fn_post_column_ref;
pstate->p_paramref_hook = sql_fn_param_ref;
/* no need to use p_coerce_param_hook */
pstate->p_ref_hook_state = pinfo;
}
/*
* sql_fn_post_column_ref parser callback for ColumnRefs
*/
static Node *
sql_fn_post_column_ref(ParseState *pstate, ColumnRef *cref, Node *var)
{
SQLFunctionParseInfoPtr pinfo = (SQLFunctionParseInfoPtr) pstate->p_ref_hook_state;
int nnames;
Node *field1;
Node *subfield = NULL;
const char *name1;
const char *name2 = NULL;
Node *param;
/*
* Never override a table-column reference. This corresponds to
* considering the parameter names to appear in a scope outside the
* individual SQL commands, which is what we want.
*/
if (var != NULL)
return NULL;
/*----------
* The allowed syntaxes are:
*
* A A = parameter name
* A.B A = function name, B = parameter name
* OR: A = record-typed parameter name, B = field name
* (the first possibility takes precedence)
* A.B.C A = function name, B = record-typed parameter name,
* C = field name
* A.* Whole-row reference to composite parameter A.
* A.B.* Same, with A = function name, B = parameter name
*
* Here, it's sufficient to ignore the "*" in the last two cases --- the
* main parser will take care of expanding the whole-row reference.
*----------
*/
nnames = list_length(cref->fields);
if (nnames > 3)
return NULL;
if (IsA(llast(cref->fields), A_Star))
nnames--;
field1 = (Node *) linitial(cref->fields);
name1 = strVal(field1);
if (nnames > 1)
{
subfield = (Node *) lsecond(cref->fields);
name2 = strVal(subfield);
}
if (nnames == 3)
{
/*
* Three-part name: if the first part doesn't match the function name,
* we can fail immediately. Otherwise, look up the second part, and
* take the third part to be a field reference.
*/
if (strcmp(name1, pinfo->fname) != 0)
return NULL;
param = sql_fn_resolve_param_name(pinfo, name2, cref->location);
subfield = (Node *) lthird(cref->fields);
Assert(IsA(subfield, String));
}
else if (nnames == 2 && strcmp(name1, pinfo->fname) == 0)
{
/*
* Two-part name with first part matching function name: first see if
* second part matches any parameter name.
*/
param = sql_fn_resolve_param_name(pinfo, name2, cref->location);
if (param)
{
/* Yes, so this is a parameter reference, no subfield */
subfield = NULL;
}
else
{
/* No, so try to match as parameter name and subfield */
param = sql_fn_resolve_param_name(pinfo, name1, cref->location);
}
}
else
{
/* Single name, or parameter name followed by subfield */
param = sql_fn_resolve_param_name(pinfo, name1, cref->location);
}
if (!param)
return NULL; /* No match */
if (subfield)
{
/*
* Must be a reference to a field of a composite parameter; otherwise
* ParseFuncOrColumn will return NULL, and we'll fail back at the
* caller.
*/
param = ParseFuncOrColumn(pstate,
list_make1(subfield),
list_make1(param),
pstate->p_last_srf,
NULL,
false,
cref->location);
}
return param;
}
/*
* sql_fn_param_ref parser callback for ParamRefs ($n symbols)
*/
static Node *
sql_fn_param_ref(ParseState *pstate, ParamRef *pref)
{
SQLFunctionParseInfoPtr pinfo = (SQLFunctionParseInfoPtr) pstate->p_ref_hook_state;
int paramno = pref->number;
/* Check parameter number is valid */
if (paramno <= 0 || paramno > pinfo->nargs)
return NULL; /* unknown parameter number */
return sql_fn_make_param(pinfo, paramno, pref->location);
}
/*
* sql_fn_make_param construct a Param node for the given paramno
*/
static Node *
sql_fn_make_param(SQLFunctionParseInfoPtr pinfo,
int paramno, int location)
{
Param *param;
param = makeNode(Param);
param->paramkind = PARAM_EXTERN;
param->paramid = paramno;
param->paramtype = pinfo->argtypes[paramno - 1];
param->paramtypmod = -1;
param->paramcollid = get_typcollation(param->paramtype);
param->location = location;
/*
* If we have a function input collation, allow it to override the
* type-derived collation for parameter symbols. (XXX perhaps this should
* not happen if the type collation is not default?)
*/
if (OidIsValid(pinfo->collation) && OidIsValid(param->paramcollid))
param->paramcollid = pinfo->collation;
return (Node *) param;
}
/*
* Search for a function parameter of the given name; if there is one,
* construct and return a Param node for it. If not, return NULL.
* Helper function for sql_fn_post_column_ref.
*/
static Node *
sql_fn_resolve_param_name(SQLFunctionParseInfoPtr pinfo,
const char *paramname, int location)
{
int i;
if (pinfo->argnames == NULL)
return NULL;
for (i = 0; i < pinfo->nargs; i++)
{
if (pinfo->argnames[i] && strcmp(pinfo->argnames[i], paramname) == 0)
return sql_fn_make_param(pinfo, i + 1, location);
}
return NULL;
}
/*
* Initialize the SQLFunctionCache for a SQL function
*/
static SQLFunctionCache *
init_sql_fcache(FunctionCallInfo fcinfo, bool lazyEvalOK)
{
FmgrInfo *finfo = fcinfo->flinfo;
SQLFunctionHashEntry *func;
SQLFunctionCache *fcache;
SQLFunctionLink *flink;
MemoryContext pcontext;
MemoryContext fcontext;
MemoryContext oldcontext;
/*
* If this is the first execution for this FmgrInfo, set up a link struct
* (initially containing null pointers). The link must live as long as
* the FmgrInfo, so it goes in fn_mcxt. Also set up a memory context
* callback that will be invoked when fn_mcxt is deleted.
*/
flink = finfo->fn_extra;
if (flink == NULL)
{
flink = (SQLFunctionLink *)
MemoryContextAllocZero(finfo->fn_mcxt, sizeof(SQLFunctionLink));
flink->mcb.func = RemoveSQLFunctionLink;
flink->mcb.arg = flink;
MemoryContextRegisterResetCallback(finfo->fn_mcxt, &flink->mcb);
finfo->fn_extra = flink;
}
/*
* If we are resuming execution of a set-returning function, just keep
* using the same cache. We do not ask funccache.c to re-validate the
* SQLFunctionHashEntry: we want to run to completion using the function's
* initial definition.
*/
if (flink->fcache != NULL)
{
Assert(flink->fcache->func == flink->func);
return flink->fcache;
}
/*
* Look up, or re-validate, the long-lived hash entry. Make the hash key
* depend on the result of get_call_result_type() when that's composite,
* so that we can safely assume that we'll build a new hash entry if the
* composite rowtype changes.
*/
func = (SQLFunctionHashEntry *)
cached_function_compile(fcinfo,
(CachedFunction *) flink->func,
sql_compile_callback,
sql_delete_callback,
sizeof(SQLFunctionHashEntry),
true,
false);
/*
* Install the hash pointer in the SQLFunctionLink, and increment its use
* count to reflect that. If cached_function_compile gave us back a
* different hash entry than we were using before, we must decrement that
* one's use count.
*/
if (func != flink->func)
{
if (flink->func != NULL)
{
Assert(flink->func->cfunc.use_count > 0);
flink->func->cfunc.use_count--;
}
flink->func = func;
func->cfunc.use_count++;
}
/*
* Create memory context that holds all the SQLFunctionCache data. If we
* return a set, we must keep this in whatever context holds the FmgrInfo
* (anything shorter-lived risks leaving a dangling pointer in flink). But
* in a non-SRF we'll delete it before returning, and there's no need for
* it to outlive the caller's context.
*/
pcontext = func->returnsSet ? finfo->fn_mcxt : CurrentMemoryContext;
fcontext = AllocSetContextCreate(pcontext,
"SQL function execution",
ALLOCSET_DEFAULT_SIZES);
oldcontext = MemoryContextSwitchTo(fcontext);
/*
* Create the struct proper, link it to func and fcontext.
*/
fcache = (SQLFunctionCache *) palloc0(sizeof(SQLFunctionCache));
fcache->func = func;
fcache->fcontext = fcontext;
fcache->lazyEvalOK = lazyEvalOK;
/*
* If we return a set, we must link the fcache into fn_extra so that we
* can find it again during future calls. But in a non-SRF there is no
* need to link it into fn_extra at all. Not doing so removes the risk of
* having a dangling pointer in a long-lived FmgrInfo.
*/
if (func->returnsSet)
flink->fcache = fcache;
/*
* We're beginning a new execution of the function, so convert params to
* appropriate format.
*/
postquel_sub_params(fcache, fcinfo);
MemoryContextSwitchTo(oldcontext);
return fcache;
}
/*
* Set up the per-query execution_state records for the next query within
* the SQL function.
*
* Returns true if successful, false if there are no more queries.
*/
static bool
init_execution_state(SQLFunctionCachePtr fcache)
{
CachedPlanSource *plansource;
execution_state *preves = NULL;
execution_state *lasttages = NULL;
ListCell *lc;
/*
* Clean up after previous query, if there was one. Note that we just
* leak the old execution_state records until end of function execution;
* there aren't likely to be enough of them to matter.
*/
if (fcache->cplan)
{
ReleaseCachedPlan(fcache->cplan, fcache->cowner);
fcache->cplan = NULL;
}
fcache->eslist = NULL;
/*
* Get the next CachedPlanSource, or stop if there are no more. We might
* need to create the next CachedPlanSource; if so, advance
* error_query_index first, so that errors detected in prepare_next_query
* are blamed on the right statement.
*/
if (fcache->next_query_index >= list_length(fcache->func->plansource_list))
{
if (fcache->next_query_index >= fcache->func->num_queries)
return false;
fcache->error_query_index++;
prepare_next_query(fcache->func);
}
else
fcache->error_query_index++;
plansource = (CachedPlanSource *) list_nth(fcache->func->plansource_list,
fcache->next_query_index);
fcache->next_query_index++;
/*
* Generate plans for the query or queries within this CachedPlanSource.
* Register the CachedPlan with the current resource owner. (Saving
* cowner here is mostly paranoia, but this way we needn't assume that
* CurrentResourceOwner will be the same when ShutdownSQLFunction runs.)
*/
fcache->cowner = CurrentResourceOwner;
fcache->cplan = GetCachedPlan(plansource,
fcache->paramLI,
fcache->cowner,
NULL);
/*
* Build execution_state list to match the number of contained plans.
*/
foreach(lc, fcache->cplan->stmt_list)
{
PlannedStmt *stmt = lfirst_node(PlannedStmt, lc);
execution_state *newes;
/*
* Precheck all commands for validity in a function. This should
* generally match the restrictions spi.c applies.
*/
if (stmt->commandType == CMD_UTILITY)
{
if (IsA(stmt->utilityStmt, CopyStmt) &&
((CopyStmt *) stmt->utilityStmt)->filename == NULL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot COPY to/from client in an SQL function")));
if (IsA(stmt->utilityStmt, TransactionStmt))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
/* translator: %s is a SQL statement name */
errmsg("%s is not allowed in an SQL function",
CreateCommandName(stmt->utilityStmt))));
}
if (fcache->func->readonly_func && !CommandIsReadOnly(stmt))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
/* translator: %s is a SQL statement name */
errmsg("%s is not allowed in a non-volatile function",
CreateCommandName((Node *) stmt))));
/* OK, build the execution_state for this query */
newes = (execution_state *) palloc(sizeof(execution_state));
if (preves)
preves->next = newes;
else
fcache->eslist = newes;
newes->next = NULL;
newes->status = F_EXEC_START;
newes->setsResult = false; /* might change below */
newes->lazyEval = false; /* might change below */
newes->stmt = stmt;
newes->qd = NULL;
if (stmt->canSetTag)
lasttages = newes;
preves = newes;
}
/*
* If this isn't the last CachedPlanSource, we're done here. Otherwise,
* we need to prepare information about how to return the results.
*/
if (fcache->next_query_index < fcache->func->num_queries)
return true;
/*
* Construct a JunkFilter we can use to coerce the returned rowtype to the
* desired form, unless the result type is VOID, in which case there's
* nothing to coerce to. (XXX Frequently, the JunkFilter isn't doing
* anything very interesting, but much of this module expects it to be
* there anyway.)
*/
if (fcache->func->rettype != VOIDOID)
{
TupleTableSlot *slot = MakeSingleTupleTableSlot(NULL,
&TTSOpsMinimalTuple);
List *resulttlist;
/*
* Re-fetch the (possibly modified) output tlist of the final
* statement. By this point, we should have thrown an error if there
* is not one.
*/
resulttlist = get_sql_fn_result_tlist(plansource->query_list);
/*
* We need to make a copy to ensure that it doesn't disappear
* underneath us due to plancache invalidation.
*/
resulttlist = copyObject(resulttlist);
/*
* If the result is composite, *and* we are returning the whole tuple
* result, we need to insert nulls for any dropped columns. In the
* single-column-result case, there might be dropped columns within
* the composite column value, but it's not our problem here. There
* should be no resjunk entries in resulttlist, so in the second case
* the JunkFilter is certainly a no-op.
*/
if (fcache->func->rettupdesc && fcache->func->returnsTuple)
fcache->junkFilter = ExecInitJunkFilterConversion(resulttlist,
fcache->func->rettupdesc,
slot);
else
fcache->junkFilter = ExecInitJunkFilter(resulttlist, slot);
}
if (fcache->func->returnsTuple)
{
/* Make sure output rowtype is properly blessed */
BlessTupleDesc(fcache->junkFilter->jf_resultSlot->tts_tupleDescriptor);
}
else if (fcache->func->returnsSet && type_is_rowtype(fcache->func->rettype))
{
/*
* Returning rowtype as if it were scalar --- materialize won't work.
* Right now it's sufficient to override any caller preference for
* materialize mode, but this might need more work in future.
*/
fcache->lazyEvalOK = true;
}
/*
* Mark the last canSetTag query as delivering the function result; then,
* if it is a plain SELECT, mark it for lazy evaluation. If it's not a
* SELECT we must always run it to completion.
*
* Note: at some point we might add additional criteria for whether to use
* lazy eval. However, we should prefer to use it whenever the function
* doesn't return set, since fetching more than one row is useless in that
* case.
*
* Note: don't set setsResult if the function returns VOID, as evidenced
* by not having made a junkfilter. This ensures we'll throw away any
* output from the last statement in such a function.
*/
if (lasttages && fcache->junkFilter)
{
lasttages->setsResult = true;
if (fcache->lazyEvalOK &&
lasttages->stmt->commandType == CMD_SELECT &&
!lasttages->stmt->hasModifyingCTE)
fcache->lazyEval = lasttages->lazyEval = true;
}
return true;
}
/*
* Convert the SQL function's next query from source form (RawStmt or Query)
* into a CachedPlanSource. If it's the last query, also determine whether
* the function returnsTuple.
*/
static void
prepare_next_query(SQLFunctionHashEntry *func)
{
int qindex;
bool islast;
CachedPlanSource *plansource;
List *queryTree_list;
MemoryContext oldcontext;
/* Which query should we process? */
qindex = list_length(func->plansource_list);
Assert(qindex < func->num_queries); /* else caller error */
islast = (qindex + 1 >= func->num_queries);
/*
* Parse and/or rewrite the query, creating a CachedPlanSource that holds
* a copy of the original parsetree.
*/
if (!func->raw_source)
{
/* Source queries are already parse-analyzed */
Query *parsetree = list_nth_node(Query, func->source_list, qindex);
plansource = CreateCachedPlanForQuery(parsetree,
func->src,
CreateCommandTag((Node *) parsetree));
AcquireRewriteLocks(parsetree, true, false);
queryTree_list = pg_rewrite_query(parsetree);
}
else
{
/* Source queries are raw parsetrees */
RawStmt *parsetree = list_nth_node(RawStmt, func->source_list, qindex);
plansource = CreateCachedPlan(parsetree,
func->src,
CreateCommandTag(parsetree->stmt));
queryTree_list = pg_analyze_and_rewrite_withcb(parsetree,
func->src,
(ParserSetupHook) sql_fn_parser_setup,
func->pinfo,
NULL);
}
/*
* Check that there are no statements we don't want to allow.
*/
check_sql_fn_statement(queryTree_list);
/*
* If this is the last query, check that the function returns the type it
* claims to. Although in simple cases this was already done when the
* function was defined, we have to recheck because database objects used
* in the function's queries might have changed type. We'd have to
* recheck anyway if the function had any polymorphic arguments. Moreover,
* check_sql_stmt_retval takes care of injecting any required column type
* coercions. (But we don't ask it to insert nulls for dropped columns;
* the junkfilter handles that.)
*
* Note: we set func->returnsTuple according to whether we are returning
* the whole tuple result or just a single column. In the latter case we
* clear returnsTuple because we need not act different from the scalar
* result case, even if it's a rowtype column. (However, we have to force
* lazy eval mode in that case; otherwise we'd need extra code to expand
* the rowtype column into multiple columns, since we have no way to
* notify the caller that it should do that.)
*/
if (islast)
func->returnsTuple = check_sql_stmt_retval(queryTree_list,
func->rettype,
func->rettupdesc,
func->prokind,
false);
/*
* Now that check_sql_stmt_retval has done its thing, we can complete plan
* cache entry creation.
*/
CompleteCachedPlan(plansource,
queryTree_list,
NULL,
NULL,
0,
(ParserSetupHook) sql_fn_parser_setup,
func->pinfo,
CURSOR_OPT_PARALLEL_OK | CURSOR_OPT_NO_SCROLL,
false);
/*
* Install post-rewrite hook. Its arg is the hash entry if this is the
* last statement, else NULL.
*/
SetPostRewriteHook(plansource,
sql_postrewrite_callback,
islast ? func : NULL);
/*
* While the CachedPlanSources can take care of themselves, our List
* pointing to them had better be in the hcontext.
*/
oldcontext = MemoryContextSwitchTo(func->hcontext);
func->plansource_list = lappend(func->plansource_list, plansource);
MemoryContextSwitchTo(oldcontext);
/*
* As soon as we've linked the CachedPlanSource into the list, mark it as
* "saved".
*/
SaveCachedPlan(plansource);
/*
* Finally, if this was the last statement, we can flush the pcontext with
* the original query trees; they're all safely copied into
* CachedPlanSources now.
*/
if (islast)
{
func->source_list = NIL; /* avoid dangling pointer */
MemoryContextDelete(func->pcontext);
func->pcontext = NULL;
}
}
/*
* Fill a new SQLFunctionHashEntry.
*
* The passed-in "cfunc" struct is expected to be zeroes, except
* for the CachedFunction fields, which we don't touch here.
*
* We expect to be called in a short-lived memory context (typically a
* query's per-tuple context). Data that is to be part of the hash entry
* must be copied into the hcontext or pcontext as appropriate.
*/
static void
sql_compile_callback(FunctionCallInfo fcinfo,
HeapTuple procedureTuple,
const CachedFunctionHashKey *hashkey,
CachedFunction *cfunc,
bool forValidator)
{
SQLFunctionHashEntry *func = (SQLFunctionHashEntry *) cfunc;
Form_pg_proc procedureStruct = (Form_pg_proc) GETSTRUCT(procedureTuple);
ErrorContextCallback comperrcontext;
MemoryContext hcontext;
MemoryContext pcontext;
MemoryContext oldcontext = CurrentMemoryContext;
Oid rettype;
TupleDesc rettupdesc;
Datum tmp;
bool isNull;
List *source_list;
/*
* Setup error traceback support for ereport() during compile. (This is
* mainly useful for reporting parse errors from pg_parse_query.)
*/
comperrcontext.callback = sql_compile_error_callback;
comperrcontext.arg = func;
comperrcontext.previous = error_context_stack;
error_context_stack = &comperrcontext;
/*
* Create the hash entry's memory context. For now it's a child of the
* caller's context, so that it will go away if we fail partway through.
*/
hcontext = AllocSetContextCreate(CurrentMemoryContext,
"SQL function",
ALLOCSET_SMALL_SIZES);
/*
* Create the not-as-long-lived pcontext. We make this a child of
* hcontext so that it doesn't require separate deletion.
*/
pcontext = AllocSetContextCreate(hcontext,
"SQL function parse trees",
ALLOCSET_SMALL_SIZES);
func->pcontext = pcontext;
/*
* copy function name immediately for use by error reporting callback, and
* for use as memory context identifier
*/
func->fname = MemoryContextStrdup(hcontext,
NameStr(procedureStruct->proname));
MemoryContextSetIdentifier(hcontext, func->fname);
/*
* Resolve any polymorphism, obtaining the actual result type, and the
* corresponding tupdesc if it's a rowtype.
*/
(void) get_call_result_type(fcinfo, &rettype, &rettupdesc);
func->rettype = rettype;
if (rettupdesc)
{
MemoryContextSwitchTo(hcontext);
func->rettupdesc = CreateTupleDescCopy(rettupdesc);
MemoryContextSwitchTo(oldcontext);
}
/* Fetch the typlen and byval info for the result type */
get_typlenbyval(rettype, &func->typlen, &func->typbyval);
/* Remember whether we're returning setof something */
func->returnsSet = procedureStruct->proretset;
/* Remember if function is STABLE/IMMUTABLE */
func->readonly_func =
(procedureStruct->provolatile != PROVOLATILE_VOLATILE);
/* Remember routine kind */
func->prokind = procedureStruct->prokind;
/*
* We need the actual argument types to pass to the parser. Also make
* sure that parameter symbols are considered to have the function's
* resolved input collation.
*/
MemoryContextSwitchTo(hcontext);
func->pinfo = prepare_sql_fn_parse_info(procedureTuple,
fcinfo->flinfo->fn_expr,
PG_GET_COLLATION());
MemoryContextSwitchTo(oldcontext);
/*
* And of course we need the function body text.
*/
tmp = SysCacheGetAttrNotNull(PROCOID, procedureTuple, Anum_pg_proc_prosrc);
func->src = MemoryContextStrdup(hcontext,
TextDatumGetCString(tmp));
/* If we have prosqlbody, pay attention to that not prosrc. */
tmp = SysCacheGetAttr(PROCOID,
procedureTuple,
Anum_pg_proc_prosqlbody,
&isNull);
if (!isNull)
{
/* Source queries are already parse-analyzed */
Node *n;
n = stringToNode(TextDatumGetCString(tmp));
if (IsA(n, List))
source_list = linitial_node(List, castNode(List, n));
else
source_list = list_make1(n);
func->raw_source = false;
}
else
{
/* Source queries are raw parsetrees */
source_list = pg_parse_query(func->src);
func->raw_source = true;
}
/*
* Note: we must save the number of queries so that we'll still remember
* how many there are after we discard source_list.
*/
func->num_queries = list_length(source_list);
/*
* Edge case: empty function body is OK only if it returns VOID. Normally
* we validate that the last statement returns the right thing in
* check_sql_stmt_retval, but we'll never reach that if there's no last
* statement.
*/
if (func->num_queries == 0 && rettype != VOIDOID)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("return type mismatch in function declared to return %s",
format_type_be(rettype)),
errdetail("Function's final statement must be SELECT or INSERT/UPDATE/DELETE/MERGE RETURNING.")));
/* Save the source trees in pcontext for now. */
MemoryContextSwitchTo(pcontext);
func->source_list = copyObject(source_list);
MemoryContextSwitchTo(oldcontext);
/*
* We now have a fully valid hash entry, so reparent hcontext under
* CacheMemoryContext to make all the subsidiary data long-lived, and only
* then install the hcontext link so that sql_delete_callback will know to
* delete it.
*/
MemoryContextSetParent(hcontext, CacheMemoryContext);
func->hcontext = hcontext;
error_context_stack = comperrcontext.previous;
}
/*
* Deletion callback used by funccache.c.
*
* Free any free-able subsidiary data of cfunc, but not the
* struct CachedFunction itself.
*/
static void
sql_delete_callback(CachedFunction *cfunc)
{
SQLFunctionHashEntry *func = (SQLFunctionHashEntry *) cfunc;
ListCell *lc;
/* Release the CachedPlanSources */
foreach(lc, func->plansource_list)
{
CachedPlanSource *plansource = (CachedPlanSource *) lfirst(lc);
DropCachedPlan(plansource);
}
func->plansource_list = NIL;
/*
* If we have an hcontext, free it, thereby getting rid of all subsidiary
* data. (If we still have a pcontext, this gets rid of that too.)
*/
if (func->hcontext)
MemoryContextDelete(func->hcontext);
func->hcontext = NULL;
}
/*
* Post-rewrite callback used by plancache.c.
*
* This must match the processing that prepare_next_query() does between
* rewriting and calling CompleteCachedPlan().
*/
static void
sql_postrewrite_callback(List *querytree_list, void *arg)
{
/*
* Check that there are no statements we don't want to allow. (Presently,
* there's no real point in this because the result can't change from what
* we saw originally. But it's cheap and maybe someday it will matter.)
*/
check_sql_fn_statement(querytree_list);
/*
* If this is the last query, we must re-do what check_sql_stmt_retval did
* to its targetlist. Also check that returnsTuple didn't change (it
* probably cannot, but be cautious).
*/
if (arg != NULL)
{
SQLFunctionHashEntry *func = (SQLFunctionHashEntry *) arg;
bool returnsTuple;
returnsTuple = check_sql_stmt_retval(querytree_list,
func->rettype,
func->rettupdesc,
func->prokind,
false);
if (returnsTuple != func->returnsTuple)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cached plan must not change result type")));
}
}
/* Start up execution of one execution_state node */
static void
postquel_start(execution_state *es, SQLFunctionCachePtr fcache)
{
DestReceiver *dest;
Assert(es->qd == NULL);
/* Caller should have ensured a suitable snapshot is active */
Assert(ActiveSnapshotSet());
/*
* If this query produces the function result, send its output to the
* tuplestore; else discard any output.
*/
if (es->setsResult)
{
DR_sqlfunction *myState;
dest = CreateDestReceiver(DestSQLFunction);
/* pass down the needed info to the dest receiver routines */
myState = (DR_sqlfunction *) dest;
Assert(myState->pub.mydest == DestSQLFunction);
myState->tstore = fcache->tstore;
myState->cxt = CurrentMemoryContext;
myState->filter = fcache->junkFilter;
}
else
dest = None_Receiver;
es->qd = CreateQueryDesc(es->stmt,
NULL,
fcache->func->src,
GetActiveSnapshot(),
InvalidSnapshot,
dest,
fcache->paramLI,
es->qd ? es->qd->queryEnv : NULL,
0);
/* Utility commands don't need Executor. */
if (es->qd->operation != CMD_UTILITY)
{
/*
* In lazyEval mode, do not let the executor set up an AfterTrigger
* context. This is necessary not just an optimization, because we
* mustn't exit from the function execution with a stacked
* AfterTrigger level still active. We are careful not to select
* lazyEval mode for any statement that could possibly queue triggers.
*/
int eflags;
if (es->lazyEval)
eflags = EXEC_FLAG_SKIP_TRIGGERS;
else
eflags = 0; /* default run-to-completion flags */
if (!ExecutorStart(es->qd, eflags))
elog(ERROR, "ExecutorStart() failed unexpectedly");
}
es->status = F_EXEC_RUN;
}
/* Run one execution_state; either to completion or to first result row */
/* Returns true if we ran to completion */
static bool
postquel_getnext(execution_state *es, SQLFunctionCachePtr fcache)
{
bool result;
if (es->qd->operation == CMD_UTILITY)
{
ProcessUtility(es->qd->plannedstmt,
fcache->func->src,
true, /* protect function cache's parsetree */
PROCESS_UTILITY_QUERY,
es->qd->params,
es->qd->queryEnv,
es->qd->dest,
NULL);
result = true; /* never stops early */
}
else
{
/* Run regular commands to completion unless lazyEval */
uint64 count = (es->lazyEval) ? 1 : 0;
ExecutorRun(es->qd, ForwardScanDirection, count);
/*
* If we requested run to completion OR there was no tuple returned,
* command must be complete.
*/
result = (count == 0 || es->qd->estate->es_processed == 0);
}
return result;
}
/* Shut down execution of one execution_state node */
static void
postquel_end(execution_state *es)
{
/* mark status done to ensure we don't do ExecutorEnd twice */
es->status = F_EXEC_DONE;
/* Utility commands don't need Executor. */
if (es->qd->operation != CMD_UTILITY)
{
ExecutorFinish(es->qd);
ExecutorEnd(es->qd);
}
es->qd->dest->rDestroy(es->qd->dest);
FreeQueryDesc(es->qd);
es->qd = NULL;
}
/* Build ParamListInfo array representing current arguments */
static void
postquel_sub_params(SQLFunctionCachePtr fcache,
FunctionCallInfo fcinfo)
{
int nargs = fcinfo->nargs;
if (nargs > 0)
{
ParamListInfo paramLI;
Oid *argtypes = fcache->func->pinfo->argtypes;
if (fcache->paramLI == NULL)
{
paramLI = makeParamList(nargs);
fcache->paramLI = paramLI;
}
else
{
paramLI = fcache->paramLI;
Assert(paramLI->numParams == nargs);
}
for (int i = 0; i < nargs; i++)
{
ParamExternData *prm = &paramLI->params[i];
/*
* If an incoming parameter value is a R/W expanded datum, we
* force it to R/O. We'd be perfectly entitled to scribble on it,
* but the problem is that if the parameter is referenced more
* than once in the function, earlier references might mutate the
* value seen by later references, which won't do at all. We
* could do better if we could be sure of the number of Param
* nodes in the function's plans; but we might not have planned
* all the statements yet, nor do we have plan tree walker
* infrastructure. (Examining the parse trees is not good enough,
* because of possible function inlining during planning.)
*/
prm->isnull = fcinfo->args[i].isnull;
prm->value = MakeExpandedObjectReadOnly(fcinfo->args[i].value,
prm->isnull,
get_typlen(argtypes[i]));
/* Allow the value to be substituted into custom plans */
prm->pflags = PARAM_FLAG_CONST;
prm->ptype = argtypes[i];
}
}
else
fcache->paramLI = NULL;
}
/*
* Extract the SQL function's value from a single result row. This is used
* both for scalar (non-set) functions and for each row of a lazy-eval set
* result.
*/
static Datum
postquel_get_single_result(TupleTableSlot *slot,
FunctionCallInfo fcinfo,
SQLFunctionCachePtr fcache,
MemoryContext resultcontext)
{
Datum value;
MemoryContext oldcontext;
/*
* Set up to return the function value. For pass-by-reference datatypes,
* be sure to allocate the result in resultcontext, not the current memory
* context (which has query lifespan). We can't leave the data in the
* TupleTableSlot because we intend to clear the slot before returning.
*/
oldcontext = MemoryContextSwitchTo(resultcontext);
if (fcache->func->returnsTuple)
{
/* We must return the whole tuple as a Datum. */
fcinfo->isnull = false;
value = ExecFetchSlotHeapTupleDatum(slot);
}
else
{
/*
* Returning a scalar, which we have to extract from the first column
* of the SELECT result, and then copy into result context if needed.
*/
value = slot_getattr(slot, 1, &(fcinfo->isnull));
if (!fcinfo->isnull)
value = datumCopy(value, fcache->func->typbyval, fcache->func->typlen);
}
MemoryContextSwitchTo(oldcontext);
return value;
}
/*
* fmgr_sql: function call manager for SQL functions
*/
Datum
fmgr_sql(PG_FUNCTION_ARGS)
{
SQLFunctionCachePtr fcache;
SQLFunctionLink *flink;
ErrorContextCallback sqlerrcontext;
MemoryContext tscontext;
MemoryContext oldcontext;
bool randomAccess;
bool lazyEvalOK;
bool pushed_snapshot;
execution_state *es;
TupleTableSlot *slot;
Datum result;
/* Check call context */
if (fcinfo->flinfo->fn_retset)
{
ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo;
/*
* For simplicity, we require callers to support both set eval modes.
* There are cases where we must use one or must use the other, and
* it's not really worthwhile to postpone the check till we know. But
* note we do not require caller to provide an expectedDesc.
*/
if (!rsi || !IsA(rsi, ReturnSetInfo) ||
(rsi->allowedModes & SFRM_ValuePerCall) == 0 ||
(rsi->allowedModes & SFRM_Materialize) == 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
randomAccess = rsi->allowedModes & SFRM_Materialize_Random;
lazyEvalOK = !(rsi->allowedModes & SFRM_Materialize_Preferred);
/* tuplestore must have query lifespan */
tscontext = rsi->econtext->ecxt_per_query_memory;
}
else
{
randomAccess = false;
lazyEvalOK = true;
/* tuplestore needn't outlive caller context */
tscontext = CurrentMemoryContext;
}
/*
* Initialize fcache if starting a fresh execution.
*/
fcache = init_sql_fcache(fcinfo, lazyEvalOK);
/* init_sql_fcache also ensures we have a SQLFunctionLink */
flink = fcinfo->flinfo->fn_extra;
/*
* Now we can set up error traceback support for ereport()
*/
sqlerrcontext.callback = sql_exec_error_callback;
sqlerrcontext.arg = fcache;
sqlerrcontext.previous = error_context_stack;
error_context_stack = &sqlerrcontext;
/*
* Build tuplestore to hold results, if we don't have one already. Make
* sure it's in a suitable context.
*/
oldcontext = MemoryContextSwitchTo(tscontext);
if (!fcache->tstore)
fcache->tstore = tuplestore_begin_heap(randomAccess, false, work_mem);
/*
* Switch to context in which the fcache lives. The sub-executor is
* responsible for deleting per-tuple information. (XXX in the case of a
* long-lived FmgrInfo, this policy potentially causes memory leakage, but
* it's not very clear where we could keep stuff instead. Fortunately,
* there are few if any cases where set-returning functions are invoked
* via FmgrInfos that would outlive the calling query.)
*/
MemoryContextSwitchTo(fcache->fcontext);
/*
* Find first unfinished execution_state. If none, advance to the next
* query in function.
*/
do
{
es = fcache->eslist;
while (es && es->status == F_EXEC_DONE)
es = es->next;
if (es)
break;
} while (init_execution_state(fcache));
/*
* Execute each command in the function one after another until we either
* run out of commands or get a result row from a lazily-evaluated SELECT.
*
* Notes about snapshot management:
*
* In a read-only function, we just use the surrounding query's snapshot.
*
* In a non-read-only function, we rely on the fact that we'll never
* suspend execution between queries of the function: the only reason to
* suspend execution before completion is if we are returning a row from a
* lazily-evaluated SELECT. So, when first entering this loop, we'll
* either start a new query (and push a fresh snapshot) or re-establish
* the active snapshot from the existing query descriptor. If we need to
* start a new query in a subsequent execution of the loop, either we need
* a fresh snapshot (and pushed_snapshot is false) or the existing
* snapshot is on the active stack and we can just bump its command ID.
*/
pushed_snapshot = false;
while (es)
{
bool completed;
if (es->status == F_EXEC_START)
{
/*
* If not read-only, be sure to advance the command counter for
* each command, so that all work to date in this transaction is
* visible. Take a new snapshot if we don't have one yet,
* otherwise just bump the command ID in the existing snapshot.
*/
if (!fcache->func->readonly_func)
{
CommandCounterIncrement();
if (!pushed_snapshot)
{
PushActiveSnapshot(GetTransactionSnapshot());
pushed_snapshot = true;
}
else
UpdateActiveSnapshotCommandId();
}
postquel_start(es, fcache);
}
else if (!fcache->func->readonly_func && !pushed_snapshot)
{
/* Re-establish active snapshot when re-entering function */
PushActiveSnapshot(es->qd->snapshot);
pushed_snapshot = true;
}
completed = postquel_getnext(es, fcache);
/*
* If we ran the command to completion, we can shut it down now. Any
* row(s) we need to return are safely stashed in the tuplestore, and
* we want to be sure that, for example, AFTER triggers get fired
* before we return anything. Also, if the function doesn't return
* set, we can shut it down anyway because it must be a SELECT and we
* don't care about fetching any more result rows.
*/
if (completed || !fcache->func->returnsSet)
postquel_end(es);
/*
* Break from loop if we didn't shut down (implying we got a
* lazily-evaluated row). Otherwise we'll press on till the whole
* function is done, relying on the tuplestore to keep hold of the
* data to eventually be returned. This is necessary since an
* INSERT/UPDATE/DELETE RETURNING that sets the result might be
* followed by additional rule-inserted commands, and we want to
* finish doing all those commands before we return anything.
*/
if (es->status != F_EXEC_DONE)
break;
/*
* Advance to next execution_state, and perhaps next query.
*/
es = es->next;
while (!es)
{
/*
* Flush the current snapshot so that we will take a new one for
* the new query list. This ensures that new snaps are taken at
* original-query boundaries, matching the behavior of interactive
* execution.
*/
if (pushed_snapshot)
{
PopActiveSnapshot();
pushed_snapshot = false;
}
if (!init_execution_state(fcache))
break; /* end of function */
es = fcache->eslist;
}
}
/*
* The tuplestore now contains whatever row(s) we are supposed to return.
*/
if (fcache->func->returnsSet)
{
ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo;
if (es)
{
/*
* If we stopped short of being done, we must have a lazy-eval
* row.
*/
Assert(es->lazyEval);
/* Re-use the junkfilter's output slot to fetch back the tuple */
Assert(fcache->junkFilter);
slot = fcache->junkFilter->jf_resultSlot;
if (!tuplestore_gettupleslot(fcache->tstore, true, false, slot))
elog(ERROR, "failed to fetch lazy-eval tuple");
/* Extract the result as a datum, and copy out from the slot */
result = postquel_get_single_result(slot, fcinfo,
fcache, oldcontext);
/* Clear the tuplestore, but keep it for next time */
/* NB: this might delete the slot's content, but we don't care */
tuplestore_clear(fcache->tstore);
/*
* Let caller know we're not finished.
*/
rsi->isDone = ExprMultipleResult;
/*
* Ensure we will get shut down cleanly if the exprcontext is not
* run to completion.
*/
if (!fcache->shutdown_reg)
{
RegisterExprContextCallback(rsi->econtext,
ShutdownSQLFunction,
PointerGetDatum(flink));
fcache->shutdown_reg = true;
}
}
else if (fcache->lazyEval)
{
/*
* We are done with a lazy evaluation. Clean up.
*/
tuplestore_clear(fcache->tstore);
/*
* Let caller know we're finished.
*/
rsi->isDone = ExprEndResult;
fcinfo->isnull = true;
result = (Datum) 0;
/* Deregister shutdown callback, if we made one */
if (fcache->shutdown_reg)
{
UnregisterExprContextCallback(rsi->econtext,
ShutdownSQLFunction,
PointerGetDatum(flink));
fcache->shutdown_reg = false;
}
}
else
{
/*
* We are done with a non-lazy evaluation. Return whatever is in
* the tuplestore. (It is now caller's responsibility to free the
* tuplestore when done.)
*/
rsi->returnMode = SFRM_Materialize;
rsi->setResult = fcache->tstore;
fcache->tstore = NULL;
/* must copy desc because execSRF.c will free it */
if (fcache->junkFilter)
{
/* setDesc must be allocated in suitable context */
MemoryContextSwitchTo(tscontext);
rsi->setDesc = CreateTupleDescCopy(fcache->junkFilter->jf_cleanTupType);
MemoryContextSwitchTo(fcache->fcontext);
}
fcinfo->isnull = true;
result = (Datum) 0;
/* Deregister shutdown callback, if we made one */
if (fcache->shutdown_reg)
{
UnregisterExprContextCallback(rsi->econtext,
ShutdownSQLFunction,
PointerGetDatum(flink));
fcache->shutdown_reg = false;
}
}
}
else
{
/*
* Non-set function. If we got a row, return it; else return NULL.
*/
if (fcache->junkFilter)
{
/* Re-use the junkfilter's output slot to fetch back the tuple */
slot = fcache->junkFilter->jf_resultSlot;
if (tuplestore_gettupleslot(fcache->tstore, true, false, slot))
result = postquel_get_single_result(slot, fcinfo,
fcache, oldcontext);
else
{
fcinfo->isnull = true;
result = (Datum) 0;
}
}
else
{
/* Should only get here for VOID functions and procedures */
Assert(fcache->func->rettype == VOIDOID);
fcinfo->isnull = true;
result = (Datum) 0;
}
/* Clear the tuplestore, but keep it for next time */
tuplestore_clear(fcache->tstore);
}
/* Pop snapshot if we have pushed one */
if (pushed_snapshot)
PopActiveSnapshot();
MemoryContextSwitchTo(oldcontext);
/*
* If we've gone through every command in the function, we are done.
* Release the cache to start over again on next call.
*/
if (es == NULL)
{
if (fcache->tstore)
tuplestore_end(fcache->tstore);
Assert(fcache->cplan == NULL);
flink->fcache = NULL;
MemoryContextDelete(fcache->fcontext);
}
error_context_stack = sqlerrcontext.previous;
return result;
}
/*
* error context callback to let us supply a traceback during compile
*/
static void
sql_compile_error_callback(void *arg)
{
SQLFunctionHashEntry *func = (SQLFunctionHashEntry *) arg;
int syntaxerrposition;
/*
* We can do nothing useful if sql_compile_callback() didn't get as far as
* copying the function name
*/
if (func->fname == NULL)
return;
/*
* If there is a syntax error position, convert to internal syntax error
*/
syntaxerrposition = geterrposition();
if (syntaxerrposition > 0 && func->src != NULL)
{
errposition(0);
internalerrposition(syntaxerrposition);
internalerrquery(func->src);
}
/*
* sql_compile_callback() doesn't do any per-query processing, so just
* report the context as "during startup".
*/
errcontext("SQL function \"%s\" during startup", func->fname);
}
/*
* error context callback to let us supply a call-stack traceback at runtime
*/
static void
sql_exec_error_callback(void *arg)
{
SQLFunctionCachePtr fcache = (SQLFunctionCachePtr) arg;
int syntaxerrposition;
/*
* If there is a syntax error position, convert to internal syntax error
*/
syntaxerrposition = geterrposition();
if (syntaxerrposition > 0 && fcache->func->src != NULL)
{
errposition(0);
internalerrposition(syntaxerrposition);
internalerrquery(fcache->func->src);
}
/*
* If we failed while executing an identifiable query within the function,
* report that. Otherwise say it was "during startup".
*/
if (fcache->error_query_index > 0)
errcontext("SQL function \"%s\" statement %d",
fcache->func->fname, fcache->error_query_index);
else
errcontext("SQL function \"%s\" during startup", fcache->func->fname);
}
/*
* ExprContext callback function
*
* We register this in the active ExprContext while a set-returning SQL
* function is running, in case the function needs to be shut down before it
* has been run to completion. Note that this will not be called during an
* error abort, but we don't need it because transaction abort will take care
* of releasing executor resources.
*/
static void
ShutdownSQLFunction(Datum arg)
{
SQLFunctionLink *flink = (SQLFunctionLink *) DatumGetPointer(arg);
SQLFunctionCachePtr fcache = flink->fcache;
if (fcache != NULL)
{
execution_state *es;
/* Make sure we don't somehow try to do this twice */
flink->fcache = NULL;
es = fcache->eslist;
while (es)
{
/* Shut down anything still running */
if (es->status == F_EXEC_RUN)
{
/* Re-establish active snapshot for any called functions */
if (!fcache->func->readonly_func)
PushActiveSnapshot(es->qd->snapshot);
postquel_end(es);
if (!fcache->func->readonly_func)
PopActiveSnapshot();
}
es = es->next;
}
/* Release tuplestore if we have one */
if (fcache->tstore)
tuplestore_end(fcache->tstore);
/* Release CachedPlan if we have one */
if (fcache->cplan)
ReleaseCachedPlan(fcache->cplan, fcache->cowner);
/* Release the cache */
MemoryContextDelete(fcache->fcontext);
}
/* execUtils will deregister the callback... */
}
/*
* MemoryContext callback function
*
* We register this in the memory context that contains a SQLFunctionLink
* struct. When the memory context is reset or deleted, we release the
* reference count (if any) that the link holds on the long-lived hash entry.
* Note that this will happen even during error aborts.
*/
static void
RemoveSQLFunctionLink(void *arg)
{
SQLFunctionLink *flink = (SQLFunctionLink *) arg;
if (flink->func != NULL)
{
Assert(flink->func->cfunc.use_count > 0);
flink->func->cfunc.use_count--;
/* This should be unnecessary, but let's just be sure: */
flink->func = NULL;
}
}
/*
* check_sql_fn_statements
*
* Check statements in an SQL function. Error out if there is anything that
* is not acceptable.
*/
void
check_sql_fn_statements(List *queryTreeLists)
{
ListCell *lc;
/* We are given a list of sublists of Queries */
foreach(lc, queryTreeLists)
{
List *sublist = lfirst_node(List, lc);
check_sql_fn_statement(sublist);
}
}
/*
* As above, for a single sublist of Queries.
*/
static void
check_sql_fn_statement(List *queryTreeList)
{
ListCell *lc;
foreach(lc, queryTreeList)
{
Query *query = lfirst_node(Query, lc);
/*
* Disallow calling procedures with output arguments. The current
* implementation would just throw the output values away, unless the
* statement is the last one. Per SQL standard, we should assign the
* output values by name. By disallowing this here, we preserve an
* opportunity for future improvement.
*/
if (query->commandType == CMD_UTILITY &&
IsA(query->utilityStmt, CallStmt))
{
CallStmt *stmt = (CallStmt *) query->utilityStmt;
if (stmt->outargs != NIL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("calling procedures with output arguments is not supported in SQL functions")));
}
}
}
/*
* check_sql_fn_retval()
* Check return value of a list of lists of sql parse trees.
*
* The return value of a sql function is the value returned by the last
* canSetTag query in the function. We do some ad-hoc type checking and
* coercion here to ensure that the function returns what it's supposed to.
* Note that we may actually modify the last query to make it match!
*
* This function returns true if the sql function returns the entire tuple
* result of its final statement, or false if it returns just the first column
* result of that statement. It throws an error if the final statement doesn't
* return the right type at all.
*
* Note that because we allow "SELECT rowtype_expression", the result can be
* false even when the declared function return type is a rowtype.
*
* For a polymorphic function the passed rettype must be the actual resolved
* output type of the function. (This means we can't check the type during
* function definition of a polymorphic function.) If we do see a polymorphic
* rettype we'll throw an error, saying it is not a supported rettype.
*
* If the function returns composite, the passed rettupdesc should describe
* the expected output. If rettupdesc is NULL, we can't verify that the
* output matches; that should only happen in fmgr_sql_validator(), or when
* the function returns RECORD and the caller doesn't actually care which
* composite type it is.
*
* (Typically, rettype and rettupdesc are computed by get_call_result_type
* or a sibling function.)
*
* In addition to coercing individual output columns, we can modify the
* output to include dummy NULL columns for any dropped columns appearing
* in rettupdesc. This is done only if the caller asks for it.
*/
bool
check_sql_fn_retval(List *queryTreeLists,
Oid rettype, TupleDesc rettupdesc,
char prokind,
bool insertDroppedCols)
{
List *queryTreeList;
/*
* We consider only the last sublist of Query nodes, so that only the last
* original statement is a candidate to produce the result. This is a
* change from pre-v18 versions, which would back up to the last statement
* that includes a canSetTag query, thus ignoring any ending statement(s)
* that rewrite to DO INSTEAD NOTHING. That behavior was undocumented and
* there seems no good reason for it, except that it was an artifact of
* the original coding.
*
* If the function body is completely empty, handle that the same as if
* the last query had rewritten to nothing.
*/
if (queryTreeLists != NIL)
queryTreeList = llast_node(List, queryTreeLists);
else
queryTreeList = NIL;
return check_sql_stmt_retval(queryTreeList,
rettype, rettupdesc,
prokind, insertDroppedCols);
}
/*
* As for check_sql_fn_retval, but we are given just the last query's
* rewritten-queries list.
*/
static bool
check_sql_stmt_retval(List *queryTreeList,
Oid rettype, TupleDesc rettupdesc,
char prokind, bool insertDroppedCols)
{
bool is_tuple_result = false;
Query *parse;
ListCell *parse_cell;
List *tlist;
int tlistlen;
bool tlist_is_modifiable;
char fn_typtype;
List *upper_tlist = NIL;
bool upper_tlist_nontrivial = false;
ListCell *lc;
/*
* If it's declared to return VOID, we don't care what's in the function.
* (This takes care of procedures with no output parameters, as well.)
*/
if (rettype == VOIDOID)
return false;
/*
* Find the last canSetTag query in the list of Query nodes. This isn't
* necessarily the last parsetree, because rule rewriting can insert
* queries after what the user wrote.
*/
parse = NULL;
parse_cell = NULL;
foreach(lc, queryTreeList)
{
Query *q = lfirst_node(Query, lc);
if (q->canSetTag)
{
parse = q;
parse_cell = lc;
}
}
/*
* If it's a plain SELECT, it returns whatever the targetlist says.
* Otherwise, if it's INSERT/UPDATE/DELETE/MERGE with RETURNING, it
* returns that. Otherwise, the function return type must be VOID.
*
* Note: eventually replace this test with QueryReturnsTuples? We'd need
* a more general method of determining the output type, though. Also, it
* seems too dangerous to consider FETCH or EXECUTE as returning a
* determinable rowtype, since they depend on relatively short-lived
* entities.
*/
if (parse &&
parse->commandType == CMD_SELECT)
{
tlist = parse->targetList;
/* tlist is modifiable unless it's a dummy in a setop query */
tlist_is_modifiable = (parse->setOperations == NULL);
}
else if (parse &&
(parse->commandType == CMD_INSERT ||
parse->commandType == CMD_UPDATE ||
parse->commandType == CMD_DELETE ||
parse->commandType == CMD_MERGE) &&
parse->returningList)
{
tlist = parse->returningList;
/* returningList can always be modified */
tlist_is_modifiable = true;
}
else
{
/* Last statement is a utility command, or it rewrote to nothing */
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("return type mismatch in function declared to return %s",
format_type_be(rettype)),
errdetail("Function's final statement must be SELECT or INSERT/UPDATE/DELETE/MERGE RETURNING.")));
return false; /* keep compiler quiet */
}
/*
* OK, check that the targetlist returns something matching the declared
* type, and modify it if necessary. If possible, we insert any coercion
* steps right into the final statement's targetlist. However, that might
* risk changes in the statement's semantics --- we can't safely change
* the output type of a grouping column, for instance. In such cases we
* handle coercions by inserting an extra level of Query that effectively
* just does a projection.
*/
/*
* Count the non-junk entries in the result targetlist.
*/
tlistlen = ExecCleanTargetListLength(tlist);
fn_typtype = get_typtype(rettype);
if (fn_typtype == TYPTYPE_BASE ||
fn_typtype == TYPTYPE_DOMAIN ||
fn_typtype == TYPTYPE_ENUM ||
fn_typtype == TYPTYPE_RANGE ||
fn_typtype == TYPTYPE_MULTIRANGE)
{
/*
* For scalar-type returns, the target list must have exactly one
* non-junk entry, and its type must be coercible to rettype.
*/
TargetEntry *tle;
if (tlistlen != 1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("return type mismatch in function declared to return %s",
format_type_be(rettype)),
errdetail("Final statement must return exactly one column.")));
/* We assume here that non-junk TLEs must come first in tlists */
tle = (TargetEntry *) linitial(tlist);
Assert(!tle->resjunk);
if (!coerce_fn_result_column(tle, rettype, -1,
tlist_is_modifiable,
&upper_tlist,
&upper_tlist_nontrivial))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("return type mismatch in function declared to return %s",
format_type_be(rettype)),
errdetail("Actual return type is %s.",
format_type_be(exprType((Node *) tle->expr)))));
}
else if (fn_typtype == TYPTYPE_COMPOSITE || rettype == RECORDOID)
{
/*
* Returns a rowtype.
*
* Note that we will not consider a domain over composite to be a
* "rowtype" return type; it goes through the scalar case above. This
* is because we only provide column-by-column implicit casting, and
* will not cast the complete record result. So the only way to
* produce a domain-over-composite result is to compute it as an
* explicit single-column result. The single-composite-column code
* path just below could handle such cases, but it won't be reached.
*/
int tupnatts; /* physical number of columns in tuple */
int tuplogcols; /* # of nondeleted columns in tuple */
int colindex; /* physical column index */
/*
* If the target list has one non-junk entry, and that expression has
* or can be coerced to the declared return type, take it as the
* result. This allows, for example, 'SELECT func2()', where func2
* has the same composite return type as the function that's calling
* it. This provision creates some ambiguity --- maybe the expression
* was meant to be the lone field of the composite result --- but it
* works well enough as long as we don't get too enthusiastic about
* inventing coercions from scalar to composite types.
*
* XXX Note that if rettype is RECORD and the expression is of a named
* composite type, or vice versa, this coercion will succeed, whether
* or not the record type really matches. For the moment we rely on
* runtime type checking to catch any discrepancy, but it'd be nice to
* do better at parse time.
*
* We must *not* do this for a procedure, however. Procedures with
* output parameter(s) have rettype RECORD, and the CALL code expects
* to get results corresponding to the list of output parameters, even
* when there's just one parameter that's composite.
*/
if (tlistlen == 1 && prokind != PROKIND_PROCEDURE)
{
TargetEntry *tle = (TargetEntry *) linitial(tlist);
Assert(!tle->resjunk);
if (coerce_fn_result_column(tle, rettype, -1,
tlist_is_modifiable,
&upper_tlist,
&upper_tlist_nontrivial))
{
/* Note that we're NOT setting is_tuple_result */
goto tlist_coercion_finished;
}
}
/*
* If the caller didn't provide an expected tupdesc, we can't do any
* further checking. Assume we're returning the whole tuple.
*/
if (rettupdesc == NULL)
return true;
/*
* Verify that the targetlist matches the return tuple type. We scan
* the non-resjunk columns, and coerce them if necessary to match the
* datatypes of the non-deleted attributes. For deleted attributes,
* insert NULL result columns if the caller asked for that.
*/
tupnatts = rettupdesc->natts;
tuplogcols = 0; /* we'll count nondeleted cols as we go */
colindex = 0;
foreach(lc, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
Form_pg_attribute attr;
/* resjunk columns can simply be ignored */
if (tle->resjunk)
continue;
do
{
colindex++;
if (colindex > tupnatts)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("return type mismatch in function declared to return %s",
format_type_be(rettype)),
errdetail("Final statement returns too many columns.")));
attr = TupleDescAttr(rettupdesc, colindex - 1);
if (attr->attisdropped && insertDroppedCols)
{
Expr *null_expr;
/* The type of the null we insert isn't important */
null_expr = (Expr *) makeConst(INT4OID,
-1,
InvalidOid,
sizeof(int32),
(Datum) 0,
true, /* isnull */
true /* byval */ );
upper_tlist = lappend(upper_tlist,
makeTargetEntry(null_expr,
list_length(upper_tlist) + 1,
NULL,
false));
upper_tlist_nontrivial = true;
}
} while (attr->attisdropped);
tuplogcols++;
if (!coerce_fn_result_column(tle,
attr->atttypid, attr->atttypmod,
tlist_is_modifiable,
&upper_tlist,
&upper_tlist_nontrivial))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("return type mismatch in function declared to return %s",
format_type_be(rettype)),
errdetail("Final statement returns %s instead of %s at column %d.",
format_type_be(exprType((Node *) tle->expr)),
format_type_be(attr->atttypid),
tuplogcols)));
}
/* remaining columns in rettupdesc had better all be dropped */
for (colindex++; colindex <= tupnatts; colindex++)
{
if (!TupleDescCompactAttr(rettupdesc, colindex - 1)->attisdropped)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("return type mismatch in function declared to return %s",
format_type_be(rettype)),
errdetail("Final statement returns too few columns.")));
if (insertDroppedCols)
{
Expr *null_expr;
/* The type of the null we insert isn't important */
null_expr = (Expr *) makeConst(INT4OID,
-1,
InvalidOid,
sizeof(int32),
(Datum) 0,
true, /* isnull */
true /* byval */ );
upper_tlist = lappend(upper_tlist,
makeTargetEntry(null_expr,
list_length(upper_tlist) + 1,
NULL,
false));
upper_tlist_nontrivial = true;
}
}
/* Report that we are returning entire tuple result */
is_tuple_result = true;
}
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("return type %s is not supported for SQL functions",
format_type_be(rettype))));
tlist_coercion_finished:
/*
* If necessary, modify the final Query by injecting an extra Query level
* that just performs a projection. (It'd be dubious to do this to a
* non-SELECT query, but we never have to; RETURNING lists can always be
* modified in-place.)
*/
if (upper_tlist_nontrivial)
{
Query *newquery;
List *colnames;
RangeTblEntry *rte;
RangeTblRef *rtr;
Assert(parse->commandType == CMD_SELECT);
/* Most of the upper Query struct can be left as zeroes/nulls */
newquery = makeNode(Query);
newquery->commandType = CMD_SELECT;
newquery->querySource = parse->querySource;
newquery->canSetTag = true;
newquery->targetList = upper_tlist;
/* We need a moderately realistic colnames list for the subquery RTE */
colnames = NIL;
foreach(lc, parse->targetList)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
if (tle->resjunk)
continue;
colnames = lappend(colnames,
makeString(tle->resname ? tle->resname : ""));
}
/* Build a suitable RTE for the subquery */
rte = makeNode(RangeTblEntry);
rte->rtekind = RTE_SUBQUERY;
rte->subquery = parse;
rte->eref = rte->alias = makeAlias("*SELECT*", colnames);
rte->lateral = false;
rte->inh = false;
rte->inFromCl = true;
newquery->rtable = list_make1(rte);
rtr = makeNode(RangeTblRef);
rtr->rtindex = 1;
newquery->jointree = makeFromExpr(list_make1(rtr), NULL);
/*
* Make sure the new query is marked as having row security if the
* original one does.
*/
newquery->hasRowSecurity = parse->hasRowSecurity;
/* Replace original query in the correct element of the query list */
lfirst(parse_cell) = newquery;
}
return is_tuple_result;
}
/*
* Process one function result column for check_sql_fn_retval
*
* Coerce the output value to the required type/typmod, and add a column
* to *upper_tlist for it. Set *upper_tlist_nontrivial to true if we
* add an upper tlist item that's not just a Var.
*
* Returns true if OK, false if could not coerce to required type
* (in which case, no changes have been made)
*/
static bool
coerce_fn_result_column(TargetEntry *src_tle,
Oid res_type,
int32 res_typmod,
bool tlist_is_modifiable,
List **upper_tlist,
bool *upper_tlist_nontrivial)
{
TargetEntry *new_tle;
Expr *new_tle_expr;
Node *cast_result;
/*
* If the TLE has a sortgroupref marking, don't change it, as it probably
* is referenced by ORDER BY, DISTINCT, etc, and changing its type would
* break query semantics. Otherwise, it's safe to modify in-place unless
* the query as a whole has issues with that.
*/
if (tlist_is_modifiable && src_tle->ressortgroupref == 0)
{
/* OK to modify src_tle in place, if necessary */
cast_result = coerce_to_target_type(NULL,
(Node *) src_tle->expr,
exprType((Node *) src_tle->expr),
res_type, res_typmod,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST,
-1);
if (cast_result == NULL)
return false;
assign_expr_collations(NULL, cast_result);
src_tle->expr = (Expr *) cast_result;
/* Make a Var referencing the possibly-modified TLE */
new_tle_expr = (Expr *) makeVarFromTargetEntry(1, src_tle);
}
else
{
/* Any casting must happen in the upper tlist */
Var *var = makeVarFromTargetEntry(1, src_tle);
cast_result = coerce_to_target_type(NULL,
(Node *) var,
var->vartype,
res_type, res_typmod,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST,
-1);
if (cast_result == NULL)
return false;
assign_expr_collations(NULL, cast_result);
/* Did the coercion actually do anything? */
if (cast_result != (Node *) var)
*upper_tlist_nontrivial = true;
new_tle_expr = (Expr *) cast_result;
}
new_tle = makeTargetEntry(new_tle_expr,
list_length(*upper_tlist) + 1,
src_tle->resname, false);
*upper_tlist = lappend(*upper_tlist, new_tle);
return true;
}
/*
* Extract the targetlist of the last canSetTag query in the given list
* of parsed-and-rewritten Queries. Returns NIL if there is none.
*/
static List *
get_sql_fn_result_tlist(List *queryTreeList)
{
Query *parse = NULL;
ListCell *lc;
foreach(lc, queryTreeList)
{
Query *q = lfirst_node(Query, lc);
if (q->canSetTag)
parse = q;
}
if (parse &&
parse->commandType == CMD_SELECT)
return parse->targetList;
else if (parse &&
(parse->commandType == CMD_INSERT ||
parse->commandType == CMD_UPDATE ||
parse->commandType == CMD_DELETE ||
parse->commandType == CMD_MERGE) &&
parse->returningList)
return parse->returningList;
else
return NIL;
}
/*
* CreateSQLFunctionDestReceiver -- create a suitable DestReceiver object
*/
DestReceiver *
CreateSQLFunctionDestReceiver(void)
{
DR_sqlfunction *self = (DR_sqlfunction *) palloc0(sizeof(DR_sqlfunction));
self->pub.receiveSlot = sqlfunction_receive;
self->pub.rStartup = sqlfunction_startup;
self->pub.rShutdown = sqlfunction_shutdown;
self->pub.rDestroy = sqlfunction_destroy;
self->pub.mydest = DestSQLFunction;
/* private fields will be set by postquel_start */
return (DestReceiver *) self;
}
/*
* sqlfunction_startup --- executor startup
*/
static void
sqlfunction_startup(DestReceiver *self, int operation, TupleDesc typeinfo)
{
/* no-op */
}
/*
* sqlfunction_receive --- receive one tuple
*/
static bool
sqlfunction_receive(TupleTableSlot *slot, DestReceiver *self)
{
DR_sqlfunction *myState = (DR_sqlfunction *) self;
/* Filter tuple as needed */
slot = ExecFilterJunk(myState->filter, slot);
/* Store the filtered tuple into the tuplestore */
tuplestore_puttupleslot(myState->tstore, slot);
return true;
}
/*
* sqlfunction_shutdown --- executor end
*/
static void
sqlfunction_shutdown(DestReceiver *self)
{
/* no-op */
}
/*
* sqlfunction_destroy --- release DestReceiver object
*/
static void
sqlfunction_destroy(DestReceiver *self)
{
pfree(self);
}