postgres/src/backend/replication/pgoutput/pgoutput.c
Tomas Vondra c91f71b9dc Fix publish_as_relid with multiple publications
Commit 83fd4532a7 allowed publishing of changes via ancestors, for
publications defined with publish_via_partition_root. But the way
the ancestor was determined in get_rel_sync_entry() was incorrect,
simply updating the same variable. So with multiple publications,
replicating different ancestors, the outcome depended on the order
of publications in the list - the value from the last loop was used,
even if it wasn't the top-most ancestor.

This is a probably rare situation, as in most cases publications do
not overlap, so each partition has exactly one candidate ancestor
to replicate as and there's no ambiguity.

Fixed by tracking the "ancestor level" for each publication, and
picking the top-most ancestor. Adds a test case, verifying the
correct ancestor is used for publishing the changes and that this
does not depend on order of publications in the list.

Older releases have another bug in this loop - once all actions are
replicated, the loop is terminated, on the assumption that inspecting
additional publications is unecessary. But that misses the fact that
those additional applications may replicate different ancestors.

Fixed by removal of this break condition. We might still terminate the
loop in some cases (e.g. when replicating all actions and the ancestor
is the partition root).

Backpatch to 13, where publish_via_partition_root was introduced.

Initial report and fix by me, test added by Hou zj. Reviews and
improvements by Amit Kapila.

Author: Tomas Vondra, Hou zj, Amit Kapila
Reviewed-by: Amit Kapila, Hou zj
Discussion: https://postgr.es/m/d26d24dd-2fab-3c48-0162-2b7f84a9c893%40enterprisedb.com
2022-03-16 18:05:58 +01:00

2089 lines
60 KiB
C

/*-------------------------------------------------------------------------
*
* pgoutput.c
* Logical Replication output plugin
*
* Copyright (c) 2012-2022, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/backend/replication/pgoutput/pgoutput.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/tupconvert.h"
#include "catalog/partition.h"
#include "catalog/pg_publication.h"
#include "catalog/pg_publication_rel.h"
#include "commands/defrem.h"
#include "executor/executor.h"
#include "fmgr.h"
#include "nodes/makefuncs.h"
#include "optimizer/optimizer.h"
#include "replication/logical.h"
#include "replication/logicalproto.h"
#include "replication/origin.h"
#include "replication/pgoutput.h"
#include "utils/builtins.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/varlena.h"
PG_MODULE_MAGIC;
extern void _PG_output_plugin_init(OutputPluginCallbacks *cb);
static void pgoutput_startup(LogicalDecodingContext *ctx,
OutputPluginOptions *opt, bool is_init);
static void pgoutput_shutdown(LogicalDecodingContext *ctx);
static void pgoutput_begin_txn(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn);
static void pgoutput_commit_txn(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn, XLogRecPtr commit_lsn);
static void pgoutput_change(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn, Relation rel,
ReorderBufferChange *change);
static void pgoutput_truncate(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn, int nrelations, Relation relations[],
ReorderBufferChange *change);
static void pgoutput_message(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn, XLogRecPtr message_lsn,
bool transactional, const char *prefix,
Size sz, const char *message);
static bool pgoutput_origin_filter(LogicalDecodingContext *ctx,
RepOriginId origin_id);
static void pgoutput_begin_prepare_txn(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn);
static void pgoutput_prepare_txn(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn, XLogRecPtr prepare_lsn);
static void pgoutput_commit_prepared_txn(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn, XLogRecPtr commit_lsn);
static void pgoutput_rollback_prepared_txn(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn,
XLogRecPtr prepare_end_lsn,
TimestampTz prepare_time);
static void pgoutput_stream_start(struct LogicalDecodingContext *ctx,
ReorderBufferTXN *txn);
static void pgoutput_stream_stop(struct LogicalDecodingContext *ctx,
ReorderBufferTXN *txn);
static void pgoutput_stream_abort(struct LogicalDecodingContext *ctx,
ReorderBufferTXN *txn,
XLogRecPtr abort_lsn);
static void pgoutput_stream_commit(struct LogicalDecodingContext *ctx,
ReorderBufferTXN *txn,
XLogRecPtr commit_lsn);
static void pgoutput_stream_prepare_txn(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn, XLogRecPtr prepare_lsn);
static bool publications_valid;
static bool in_streaming;
static List *LoadPublications(List *pubnames);
static void publication_invalidation_cb(Datum arg, int cacheid,
uint32 hashvalue);
static void send_relation_and_attrs(Relation relation, TransactionId xid,
LogicalDecodingContext *ctx);
static void send_repl_origin(LogicalDecodingContext *ctx,
RepOriginId origin_id, XLogRecPtr origin_lsn,
bool send_origin);
/*
* Only 3 publication actions are used for row filtering ("insert", "update",
* "delete"). See RelationSyncEntry.exprstate[].
*/
enum RowFilterPubAction
{
PUBACTION_INSERT,
PUBACTION_UPDATE,
PUBACTION_DELETE
};
#define NUM_ROWFILTER_PUBACTIONS (PUBACTION_DELETE+1)
/*
* Entry in the map used to remember which relation schemas we sent.
*
* The schema_sent flag determines if the current schema record for the
* relation (and for its ancestor if publish_as_relid is set) was already
* sent to the subscriber (in which case we don't need to send it again).
*
* The schema cache on downstream is however updated only at commit time,
* and with streamed transactions the commit order may be different from
* the order the transactions are sent in. Also, the (sub) transactions
* might get aborted so we need to send the schema for each (sub) transaction
* so that we don't lose the schema information on abort. For handling this,
* we maintain the list of xids (streamed_txns) for those we have already sent
* the schema.
*
* For partitions, 'pubactions' considers not only the table's own
* publications, but also those of all of its ancestors.
*/
typedef struct RelationSyncEntry
{
Oid relid; /* relation oid */
bool replicate_valid; /* overall validity flag for entry */
bool schema_sent;
List *streamed_txns; /* streamed toplevel transactions with this
* schema */
/* are we publishing this rel? */
PublicationActions pubactions;
/*
* ExprState array for row filter. Different publication actions don't
* allow multiple expressions to always be combined into one, because
* updates or deletes restrict the column in expression to be part of the
* replica identity index whereas inserts do not have this restriction, so
* there is one ExprState per publication action.
*/
ExprState *exprstate[NUM_ROWFILTER_PUBACTIONS];
EState *estate; /* executor state used for row filter */
MemoryContext cache_expr_cxt; /* private context for exprstate and
* estate, if any */
TupleTableSlot *new_slot; /* slot for storing new tuple */
TupleTableSlot *old_slot; /* slot for storing old tuple */
/*
* OID of the relation to publish changes as. For a partition, this may
* be set to one of its ancestors whose schema will be used when
* replicating changes, if publish_via_partition_root is set for the
* publication.
*/
Oid publish_as_relid;
/*
* Map used when replicating using an ancestor's schema to convert tuples
* from partition's type to the ancestor's; NULL if publish_as_relid is
* same as 'relid' or if unnecessary due to partition and the ancestor
* having identical TupleDesc.
*/
AttrMap *attrmap;
} RelationSyncEntry;
/* Map used to remember which relation schemas we sent. */
static HTAB *RelationSyncCache = NULL;
static void init_rel_sync_cache(MemoryContext decoding_context);
static void cleanup_rel_sync_cache(TransactionId xid, bool is_commit);
static RelationSyncEntry *get_rel_sync_entry(PGOutputData *data,
Relation relation);
static void rel_sync_cache_relation_cb(Datum arg, Oid relid);
static void rel_sync_cache_publication_cb(Datum arg, int cacheid,
uint32 hashvalue);
static void set_schema_sent_in_streamed_txn(RelationSyncEntry *entry,
TransactionId xid);
static bool get_schema_sent_in_streamed_txn(RelationSyncEntry *entry,
TransactionId xid);
static void init_tuple_slot(PGOutputData *data, Relation relation,
RelationSyncEntry *entry);
/* row filter routines */
static EState *create_estate_for_relation(Relation rel);
static void pgoutput_row_filter_init(PGOutputData *data,
List *publications,
RelationSyncEntry *entry);
static bool pgoutput_row_filter_exec_expr(ExprState *state,
ExprContext *econtext);
static bool pgoutput_row_filter(Relation relation, TupleTableSlot *old_slot,
TupleTableSlot **new_slot_ptr,
RelationSyncEntry *entry,
ReorderBufferChangeType *action);
/*
* Specify output plugin callbacks
*/
void
_PG_output_plugin_init(OutputPluginCallbacks *cb)
{
AssertVariableIsOfType(&_PG_output_plugin_init, LogicalOutputPluginInit);
cb->startup_cb = pgoutput_startup;
cb->begin_cb = pgoutput_begin_txn;
cb->change_cb = pgoutput_change;
cb->truncate_cb = pgoutput_truncate;
cb->message_cb = pgoutput_message;
cb->commit_cb = pgoutput_commit_txn;
cb->begin_prepare_cb = pgoutput_begin_prepare_txn;
cb->prepare_cb = pgoutput_prepare_txn;
cb->commit_prepared_cb = pgoutput_commit_prepared_txn;
cb->rollback_prepared_cb = pgoutput_rollback_prepared_txn;
cb->filter_by_origin_cb = pgoutput_origin_filter;
cb->shutdown_cb = pgoutput_shutdown;
/* transaction streaming */
cb->stream_start_cb = pgoutput_stream_start;
cb->stream_stop_cb = pgoutput_stream_stop;
cb->stream_abort_cb = pgoutput_stream_abort;
cb->stream_commit_cb = pgoutput_stream_commit;
cb->stream_change_cb = pgoutput_change;
cb->stream_message_cb = pgoutput_message;
cb->stream_truncate_cb = pgoutput_truncate;
/* transaction streaming - two-phase commit */
cb->stream_prepare_cb = pgoutput_stream_prepare_txn;
}
static void
parse_output_parameters(List *options, PGOutputData *data)
{
ListCell *lc;
bool protocol_version_given = false;
bool publication_names_given = false;
bool binary_option_given = false;
bool messages_option_given = false;
bool streaming_given = false;
bool two_phase_option_given = false;
data->binary = false;
data->streaming = false;
data->messages = false;
data->two_phase = false;
foreach(lc, options)
{
DefElem *defel = (DefElem *) lfirst(lc);
Assert(defel->arg == NULL || IsA(defel->arg, String));
/* Check each param, whether or not we recognize it */
if (strcmp(defel->defname, "proto_version") == 0)
{
unsigned long parsed;
char *endptr;
if (protocol_version_given)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("conflicting or redundant options")));
protocol_version_given = true;
errno = 0;
parsed = strtoul(strVal(defel->arg), &endptr, 10);
if (errno != 0 || *endptr != '\0')
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid proto_version")));
if (parsed > PG_UINT32_MAX)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("proto_version \"%s\" out of range",
strVal(defel->arg))));
data->protocol_version = (uint32) parsed;
}
else if (strcmp(defel->defname, "publication_names") == 0)
{
if (publication_names_given)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("conflicting or redundant options")));
publication_names_given = true;
if (!SplitIdentifierString(strVal(defel->arg), ',',
&data->publication_names))
ereport(ERROR,
(errcode(ERRCODE_INVALID_NAME),
errmsg("invalid publication_names syntax")));
}
else if (strcmp(defel->defname, "binary") == 0)
{
if (binary_option_given)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("conflicting or redundant options")));
binary_option_given = true;
data->binary = defGetBoolean(defel);
}
else if (strcmp(defel->defname, "messages") == 0)
{
if (messages_option_given)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("conflicting or redundant options")));
messages_option_given = true;
data->messages = defGetBoolean(defel);
}
else if (strcmp(defel->defname, "streaming") == 0)
{
if (streaming_given)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("conflicting or redundant options")));
streaming_given = true;
data->streaming = defGetBoolean(defel);
}
else if (strcmp(defel->defname, "two_phase") == 0)
{
if (two_phase_option_given)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("conflicting or redundant options")));
two_phase_option_given = true;
data->two_phase = defGetBoolean(defel);
}
else
elog(ERROR, "unrecognized pgoutput option: %s", defel->defname);
}
}
/*
* Initialize this plugin
*/
static void
pgoutput_startup(LogicalDecodingContext *ctx, OutputPluginOptions *opt,
bool is_init)
{
PGOutputData *data = palloc0(sizeof(PGOutputData));
/* Create our memory context for private allocations. */
data->context = AllocSetContextCreate(ctx->context,
"logical replication output context",
ALLOCSET_DEFAULT_SIZES);
data->cachectx = AllocSetContextCreate(ctx->context,
"logical replication cache context",
ALLOCSET_DEFAULT_SIZES);
ctx->output_plugin_private = data;
/* This plugin uses binary protocol. */
opt->output_type = OUTPUT_PLUGIN_BINARY_OUTPUT;
/*
* This is replication start and not slot initialization.
*
* Parse and validate options passed by the client.
*/
if (!is_init)
{
/* Parse the params and ERROR if we see any we don't recognize */
parse_output_parameters(ctx->output_plugin_options, data);
/* Check if we support requested protocol */
if (data->protocol_version > LOGICALREP_PROTO_MAX_VERSION_NUM)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("client sent proto_version=%d but we only support protocol %d or lower",
data->protocol_version, LOGICALREP_PROTO_MAX_VERSION_NUM)));
if (data->protocol_version < LOGICALREP_PROTO_MIN_VERSION_NUM)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("client sent proto_version=%d but we only support protocol %d or higher",
data->protocol_version, LOGICALREP_PROTO_MIN_VERSION_NUM)));
if (list_length(data->publication_names) < 1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("publication_names parameter missing")));
/*
* Decide whether to enable streaming. It is disabled by default, in
* which case we just update the flag in decoding context. Otherwise
* we only allow it with sufficient version of the protocol, and when
* the output plugin supports it.
*/
if (!data->streaming)
ctx->streaming = false;
else if (data->protocol_version < LOGICALREP_PROTO_STREAM_VERSION_NUM)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("requested proto_version=%d does not support streaming, need %d or higher",
data->protocol_version, LOGICALREP_PROTO_STREAM_VERSION_NUM)));
else if (!ctx->streaming)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("streaming requested, but not supported by output plugin")));
/* Also remember we're currently not streaming any transaction. */
in_streaming = false;
/*
* Here, we just check whether the two-phase option is passed by
* plugin and decide whether to enable it at later point of time. It
* remains enabled if the previous start-up has done so. But we only
* allow the option to be passed in with sufficient version of the
* protocol, and when the output plugin supports it.
*/
if (!data->two_phase)
ctx->twophase_opt_given = false;
else if (data->protocol_version < LOGICALREP_PROTO_TWOPHASE_VERSION_NUM)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("requested proto_version=%d does not support two-phase commit, need %d or higher",
data->protocol_version, LOGICALREP_PROTO_TWOPHASE_VERSION_NUM)));
else if (!ctx->twophase)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("two-phase commit requested, but not supported by output plugin")));
else
ctx->twophase_opt_given = true;
/* Init publication state. */
data->publications = NIL;
publications_valid = false;
CacheRegisterSyscacheCallback(PUBLICATIONOID,
publication_invalidation_cb,
(Datum) 0);
/* Initialize relation schema cache. */
init_rel_sync_cache(CacheMemoryContext);
}
else
{
/*
* Disable the streaming and prepared transactions during the slot
* initialization mode.
*/
ctx->streaming = false;
ctx->twophase = false;
}
}
/*
* BEGIN callback
*/
static void
pgoutput_begin_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
{
bool send_replication_origin = txn->origin_id != InvalidRepOriginId;
OutputPluginPrepareWrite(ctx, !send_replication_origin);
logicalrep_write_begin(ctx->out, txn);
send_repl_origin(ctx, txn->origin_id, txn->origin_lsn,
send_replication_origin);
OutputPluginWrite(ctx, true);
}
/*
* COMMIT callback
*/
static void
pgoutput_commit_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
XLogRecPtr commit_lsn)
{
OutputPluginUpdateProgress(ctx);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_commit(ctx->out, txn, commit_lsn);
OutputPluginWrite(ctx, true);
}
/*
* BEGIN PREPARE callback
*/
static void
pgoutput_begin_prepare_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
{
bool send_replication_origin = txn->origin_id != InvalidRepOriginId;
OutputPluginPrepareWrite(ctx, !send_replication_origin);
logicalrep_write_begin_prepare(ctx->out, txn);
send_repl_origin(ctx, txn->origin_id, txn->origin_lsn,
send_replication_origin);
OutputPluginWrite(ctx, true);
}
/*
* PREPARE callback
*/
static void
pgoutput_prepare_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
XLogRecPtr prepare_lsn)
{
OutputPluginUpdateProgress(ctx);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_prepare(ctx->out, txn, prepare_lsn);
OutputPluginWrite(ctx, true);
}
/*
* COMMIT PREPARED callback
*/
static void
pgoutput_commit_prepared_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
XLogRecPtr commit_lsn)
{
OutputPluginUpdateProgress(ctx);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_commit_prepared(ctx->out, txn, commit_lsn);
OutputPluginWrite(ctx, true);
}
/*
* ROLLBACK PREPARED callback
*/
static void
pgoutput_rollback_prepared_txn(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn,
XLogRecPtr prepare_end_lsn,
TimestampTz prepare_time)
{
OutputPluginUpdateProgress(ctx);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_rollback_prepared(ctx->out, txn, prepare_end_lsn,
prepare_time);
OutputPluginWrite(ctx, true);
}
/*
* Write the current schema of the relation and its ancestor (if any) if not
* done yet.
*/
static void
maybe_send_schema(LogicalDecodingContext *ctx,
ReorderBufferChange *change,
Relation relation, RelationSyncEntry *relentry)
{
bool schema_sent;
TransactionId xid = InvalidTransactionId;
TransactionId topxid = InvalidTransactionId;
/*
* Remember XID of the (sub)transaction for the change. We don't care if
* it's top-level transaction or not (we have already sent that XID in
* start of the current streaming block).
*
* If we're not in a streaming block, just use InvalidTransactionId and
* the write methods will not include it.
*/
if (in_streaming)
xid = change->txn->xid;
if (change->txn->toptxn)
topxid = change->txn->toptxn->xid;
else
topxid = xid;
/*
* Do we need to send the schema? We do track streamed transactions
* separately, because those may be applied later (and the regular
* transactions won't see their effects until then) and in an order that
* we don't know at this point.
*
* XXX There is a scope of optimization here. Currently, we always send
* the schema first time in a streaming transaction but we can probably
* avoid that by checking 'relentry->schema_sent' flag. However, before
* doing that we need to study its impact on the case where we have a mix
* of streaming and non-streaming transactions.
*/
if (in_streaming)
schema_sent = get_schema_sent_in_streamed_txn(relentry, topxid);
else
schema_sent = relentry->schema_sent;
/* Nothing to do if we already sent the schema. */
if (schema_sent)
return;
/*
* Send the schema. If the changes will be published using an ancestor's
* schema, not the relation's own, send that ancestor's schema before
* sending relation's own (XXX - maybe sending only the former suffices?).
*/
if (relentry->publish_as_relid != RelationGetRelid(relation))
{
Relation ancestor = RelationIdGetRelation(relentry->publish_as_relid);
send_relation_and_attrs(ancestor, xid, ctx);
RelationClose(ancestor);
}
send_relation_and_attrs(relation, xid, ctx);
if (in_streaming)
set_schema_sent_in_streamed_txn(relentry, topxid);
else
relentry->schema_sent = true;
}
/*
* Sends a relation
*/
static void
send_relation_and_attrs(Relation relation, TransactionId xid,
LogicalDecodingContext *ctx)
{
TupleDesc desc = RelationGetDescr(relation);
int i;
/*
* Write out type info if needed. We do that only for user-created types.
* We use FirstGenbkiObjectId as the cutoff, so that we only consider
* objects with hand-assigned OIDs to be "built in", not for instance any
* function or type defined in the information_schema. This is important
* because only hand-assigned OIDs can be expected to remain stable across
* major versions.
*/
for (i = 0; i < desc->natts; i++)
{
Form_pg_attribute att = TupleDescAttr(desc, i);
if (att->attisdropped || att->attgenerated)
continue;
if (att->atttypid < FirstGenbkiObjectId)
continue;
OutputPluginPrepareWrite(ctx, false);
logicalrep_write_typ(ctx->out, xid, att->atttypid);
OutputPluginWrite(ctx, false);
}
OutputPluginPrepareWrite(ctx, false);
logicalrep_write_rel(ctx->out, xid, relation);
OutputPluginWrite(ctx, false);
}
/*
* Executor state preparation for evaluation of row filter expressions for the
* specified relation.
*/
static EState *
create_estate_for_relation(Relation rel)
{
EState *estate;
RangeTblEntry *rte;
estate = CreateExecutorState();
rte = makeNode(RangeTblEntry);
rte->rtekind = RTE_RELATION;
rte->relid = RelationGetRelid(rel);
rte->relkind = rel->rd_rel->relkind;
rte->rellockmode = AccessShareLock;
ExecInitRangeTable(estate, list_make1(rte));
estate->es_output_cid = GetCurrentCommandId(false);
return estate;
}
/*
* Evaluates row filter.
*
* If the row filter evaluates to NULL, it is taken as false i.e. the change
* isn't replicated.
*/
static bool
pgoutput_row_filter_exec_expr(ExprState *state, ExprContext *econtext)
{
Datum ret;
bool isnull;
Assert(state != NULL);
ret = ExecEvalExprSwitchContext(state, econtext, &isnull);
elog(DEBUG3, "row filter evaluates to %s (isnull: %s)",
isnull ? "false" : DatumGetBool(ret) ? "true" : "false",
isnull ? "true" : "false");
if (isnull)
return false;
return DatumGetBool(ret);
}
/*
* Initialize the row filter.
*/
static void
pgoutput_row_filter_init(PGOutputData *data, List *publications,
RelationSyncEntry *entry)
{
ListCell *lc;
List *rfnodes[] = {NIL, NIL, NIL}; /* One per pubaction */
bool no_filter[] = {false, false, false}; /* One per pubaction */
MemoryContext oldctx;
int idx;
bool has_filter = true;
/*
* Find if there are any row filters for this relation. If there are, then
* prepare the necessary ExprState and cache it in entry->exprstate. To
* build an expression state, we need to ensure the following:
*
* All the given publication-table mappings must be checked.
*
* Multiple publications might have multiple row filters for this
* relation. Since row filter usage depends on the DML operation, there
* are multiple lists (one for each operation) to which row filters will
* be appended.
*
* FOR ALL TABLES implies "don't use row filter expression" so it takes
* precedence.
*/
foreach(lc, publications)
{
Publication *pub = lfirst(lc);
HeapTuple rftuple = NULL;
Datum rfdatum = 0;
bool pub_no_filter = false;
if (pub->alltables)
{
/*
* If the publication is FOR ALL TABLES then it is treated the
* same as if this table has no row filters (even if for other
* publications it does).
*/
pub_no_filter = true;
}
else
{
/*
* Check for the presence of a row filter in this publication.
*/
rftuple = SearchSysCache2(PUBLICATIONRELMAP,
ObjectIdGetDatum(entry->publish_as_relid),
ObjectIdGetDatum(pub->oid));
if (HeapTupleIsValid(rftuple))
{
/* Null indicates no filter. */
rfdatum = SysCacheGetAttr(PUBLICATIONRELMAP, rftuple,
Anum_pg_publication_rel_prqual,
&pub_no_filter);
}
else
{
pub_no_filter = true;
}
}
if (pub_no_filter)
{
if (rftuple)
ReleaseSysCache(rftuple);
no_filter[PUBACTION_INSERT] |= pub->pubactions.pubinsert;
no_filter[PUBACTION_UPDATE] |= pub->pubactions.pubupdate;
no_filter[PUBACTION_DELETE] |= pub->pubactions.pubdelete;
/*
* Quick exit if all the DML actions are publicized via this
* publication.
*/
if (no_filter[PUBACTION_INSERT] &&
no_filter[PUBACTION_UPDATE] &&
no_filter[PUBACTION_DELETE])
{
has_filter = false;
break;
}
/* No additional work for this publication. Next one. */
continue;
}
/* Form the per pubaction row filter lists. */
if (pub->pubactions.pubinsert && !no_filter[PUBACTION_INSERT])
rfnodes[PUBACTION_INSERT] = lappend(rfnodes[PUBACTION_INSERT],
TextDatumGetCString(rfdatum));
if (pub->pubactions.pubupdate && !no_filter[PUBACTION_UPDATE])
rfnodes[PUBACTION_UPDATE] = lappend(rfnodes[PUBACTION_UPDATE],
TextDatumGetCString(rfdatum));
if (pub->pubactions.pubdelete && !no_filter[PUBACTION_DELETE])
rfnodes[PUBACTION_DELETE] = lappend(rfnodes[PUBACTION_DELETE],
TextDatumGetCString(rfdatum));
ReleaseSysCache(rftuple);
} /* loop all subscribed publications */
/* Clean the row filter */
for (idx = 0; idx < NUM_ROWFILTER_PUBACTIONS; idx++)
{
if (no_filter[idx])
{
list_free_deep(rfnodes[idx]);
rfnodes[idx] = NIL;
}
}
if (has_filter)
{
Relation relation = RelationIdGetRelation(entry->publish_as_relid);
Assert(entry->cache_expr_cxt == NULL);
/* Create the memory context for row filters */
entry->cache_expr_cxt = AllocSetContextCreate(data->cachectx,
"Row filter expressions",
ALLOCSET_DEFAULT_SIZES);
MemoryContextCopyAndSetIdentifier(entry->cache_expr_cxt,
RelationGetRelationName(relation));
/*
* Now all the filters for all pubactions are known. Combine them when
* their pubactions are the same.
*/
oldctx = MemoryContextSwitchTo(entry->cache_expr_cxt);
entry->estate = create_estate_for_relation(relation);
for (idx = 0; idx < NUM_ROWFILTER_PUBACTIONS; idx++)
{
List *filters = NIL;
Expr *rfnode;
if (rfnodes[idx] == NIL)
continue;
foreach(lc, rfnodes[idx])
filters = lappend(filters, stringToNode((char *) lfirst(lc)));
/* combine the row filter and cache the ExprState */
rfnode = make_orclause(filters);
entry->exprstate[idx] = ExecPrepareExpr(rfnode, entry->estate);
} /* for each pubaction */
MemoryContextSwitchTo(oldctx);
RelationClose(relation);
}
}
/*
* Initialize the slot for storing new and old tuples, and build the map that
* will be used to convert the relation's tuples into the ancestor's format.
*/
static void
init_tuple_slot(PGOutputData *data, Relation relation,
RelationSyncEntry *entry)
{
MemoryContext oldctx;
TupleDesc oldtupdesc;
TupleDesc newtupdesc;
oldctx = MemoryContextSwitchTo(data->cachectx);
/*
* Create tuple table slots. Create a copy of the TupleDesc as it needs to
* live as long as the cache remains.
*/
oldtupdesc = CreateTupleDescCopy(RelationGetDescr(relation));
newtupdesc = CreateTupleDescCopy(RelationGetDescr(relation));
entry->old_slot = MakeSingleTupleTableSlot(oldtupdesc, &TTSOpsHeapTuple);
entry->new_slot = MakeSingleTupleTableSlot(newtupdesc, &TTSOpsHeapTuple);
MemoryContextSwitchTo(oldctx);
/*
* Cache the map that will be used to convert the relation's tuples into
* the ancestor's format, if needed.
*/
if (entry->publish_as_relid != RelationGetRelid(relation))
{
Relation ancestor = RelationIdGetRelation(entry->publish_as_relid);
TupleDesc indesc = RelationGetDescr(relation);
TupleDesc outdesc = RelationGetDescr(ancestor);
/* Map must live as long as the session does. */
oldctx = MemoryContextSwitchTo(CacheMemoryContext);
entry->attrmap = build_attrmap_by_name_if_req(indesc, outdesc);
MemoryContextSwitchTo(oldctx);
RelationClose(ancestor);
}
}
/*
* Change is checked against the row filter if any.
*
* Returns true if the change is to be replicated, else false.
*
* For inserts, evaluate the row filter for new tuple.
* For deletes, evaluate the row filter for old tuple.
* For updates, evaluate the row filter for old and new tuple.
*
* For updates, if both evaluations are true, we allow sending the UPDATE and
* if both the evaluations are false, it doesn't replicate the UPDATE. Now, if
* only one of the tuples matches the row filter expression, we transform
* UPDATE to DELETE or INSERT to avoid any data inconsistency based on the
* following rules:
*
* Case 1: old-row (no match) new-row (no match) -> (drop change)
* Case 2: old-row (no match) new row (match) -> INSERT
* Case 3: old-row (match) new-row (no match) -> DELETE
* Case 4: old-row (match) new row (match) -> UPDATE
*
* The new action is updated in the action parameter.
*
* The new slot could be updated when transforming the UPDATE into INSERT,
* because the original new tuple might not have column values from the replica
* identity.
*
* Examples:
* Let's say the old tuple satisfies the row filter but the new tuple doesn't.
* Since the old tuple satisfies, the initial table synchronization copied this
* row (or another method was used to guarantee that there is data
* consistency). However, after the UPDATE the new tuple doesn't satisfy the
* row filter, so from a data consistency perspective, that row should be
* removed on the subscriber. The UPDATE should be transformed into a DELETE
* statement and be sent to the subscriber. Keeping this row on the subscriber
* is undesirable because it doesn't reflect what was defined in the row filter
* expression on the publisher. This row on the subscriber would likely not be
* modified by replication again. If someone inserted a new row with the same
* old identifier, replication could stop due to a constraint violation.
*
* Let's say the old tuple doesn't match the row filter but the new tuple does.
* Since the old tuple doesn't satisfy, the initial table synchronization
* probably didn't copy this row. However, after the UPDATE the new tuple does
* satisfy the row filter, so from a data consistency perspective, that row
* should be inserted on the subscriber. Otherwise, subsequent UPDATE or DELETE
* statements have no effect (it matches no row -- see
* apply_handle_update_internal()). So, the UPDATE should be transformed into a
* INSERT statement and be sent to the subscriber. However, this might surprise
* someone who expects the data set to satisfy the row filter expression on the
* provider.
*/
static bool
pgoutput_row_filter(Relation relation, TupleTableSlot *old_slot,
TupleTableSlot **new_slot_ptr, RelationSyncEntry *entry,
ReorderBufferChangeType *action)
{
TupleDesc desc;
int i;
bool old_matched,
new_matched,
result;
TupleTableSlot *tmp_new_slot;
TupleTableSlot *new_slot = *new_slot_ptr;
ExprContext *ecxt;
ExprState *filter_exprstate;
/*
* We need this map to avoid relying on ReorderBufferChangeType enums
* having specific values.
*/
static const int map_changetype_pubaction[] = {
[REORDER_BUFFER_CHANGE_INSERT] = PUBACTION_INSERT,
[REORDER_BUFFER_CHANGE_UPDATE] = PUBACTION_UPDATE,
[REORDER_BUFFER_CHANGE_DELETE] = PUBACTION_DELETE
};
Assert(*action == REORDER_BUFFER_CHANGE_INSERT ||
*action == REORDER_BUFFER_CHANGE_UPDATE ||
*action == REORDER_BUFFER_CHANGE_DELETE);
Assert(new_slot || old_slot);
/* Get the corresponding row filter */
filter_exprstate = entry->exprstate[map_changetype_pubaction[*action]];
/* Bail out if there is no row filter */
if (!filter_exprstate)
return true;
elog(DEBUG3, "table \"%s.%s\" has row filter",
get_namespace_name(RelationGetNamespace(relation)),
RelationGetRelationName(relation));
ResetPerTupleExprContext(entry->estate);
ecxt = GetPerTupleExprContext(entry->estate);
/*
* For the following occasions where there is only one tuple, we can
* evaluate the row filter for that tuple and return.
*
* For inserts, we only have the new tuple.
*
* For updates, we can have only a new tuple when none of the replica
* identity columns changed but we still need to evaluate the row filter
* for new tuple as the existing values of those columns might not match
* the filter. Also, users can use constant expressions in the row filter,
* so we anyway need to evaluate it for the new tuple.
*
* For deletes, we only have the old tuple.
*/
if (!new_slot || !old_slot)
{
ecxt->ecxt_scantuple = new_slot ? new_slot : old_slot;
result = pgoutput_row_filter_exec_expr(filter_exprstate, ecxt);
return result;
}
/*
* Both the old and new tuples must be valid only for updates and need to
* be checked against the row filter.
*/
Assert(map_changetype_pubaction[*action] == PUBACTION_UPDATE);
slot_getallattrs(new_slot);
slot_getallattrs(old_slot);
tmp_new_slot = NULL;
desc = RelationGetDescr(relation);
/*
* The new tuple might not have all the replica identity columns, in which
* case it needs to be copied over from the old tuple.
*/
for (i = 0; i < desc->natts; i++)
{
Form_pg_attribute att = TupleDescAttr(desc, i);
/*
* if the column in the new tuple or old tuple is null, nothing to do
*/
if (new_slot->tts_isnull[i] || old_slot->tts_isnull[i])
continue;
/*
* Unchanged toasted replica identity columns are only logged in the
* old tuple. Copy this over to the new tuple. The changed (or WAL
* Logged) toast values are always assembled in memory and set as
* VARTAG_INDIRECT. See ReorderBufferToastReplace.
*/
if (att->attlen == -1 &&
VARATT_IS_EXTERNAL_ONDISK(new_slot->tts_values[i]) &&
!VARATT_IS_EXTERNAL_ONDISK(old_slot->tts_values[i]))
{
if (!tmp_new_slot)
{
tmp_new_slot = MakeSingleTupleTableSlot(desc, &TTSOpsVirtual);
ExecClearTuple(tmp_new_slot);
memcpy(tmp_new_slot->tts_values, new_slot->tts_values,
desc->natts * sizeof(Datum));
memcpy(tmp_new_slot->tts_isnull, new_slot->tts_isnull,
desc->natts * sizeof(bool));
}
tmp_new_slot->tts_values[i] = old_slot->tts_values[i];
tmp_new_slot->tts_isnull[i] = old_slot->tts_isnull[i];
}
}
ecxt->ecxt_scantuple = old_slot;
old_matched = pgoutput_row_filter_exec_expr(filter_exprstate, ecxt);
if (tmp_new_slot)
{
ExecStoreVirtualTuple(tmp_new_slot);
ecxt->ecxt_scantuple = tmp_new_slot;
}
else
ecxt->ecxt_scantuple = new_slot;
new_matched = pgoutput_row_filter_exec_expr(filter_exprstate, ecxt);
/*
* Case 1: if both tuples don't match the row filter, bailout. Send
* nothing.
*/
if (!old_matched && !new_matched)
return false;
/*
* Case 2: if the old tuple doesn't satisfy the row filter but the new
* tuple does, transform the UPDATE into INSERT.
*
* Use the newly transformed tuple that must contain the column values for
* all the replica identity columns. This is required to ensure that the
* while inserting the tuple in the downstream node, we have all the
* required column values.
*/
if (!old_matched && new_matched)
{
*action = REORDER_BUFFER_CHANGE_INSERT;
if (tmp_new_slot)
*new_slot_ptr = tmp_new_slot;
}
/*
* Case 3: if the old tuple satisfies the row filter but the new tuple
* doesn't, transform the UPDATE into DELETE.
*
* This transformation does not require another tuple. The Old tuple will
* be used for DELETE.
*/
else if (old_matched && !new_matched)
*action = REORDER_BUFFER_CHANGE_DELETE;
/*
* Case 4: if both tuples match the row filter, transformation isn't
* required. (*action is default UPDATE).
*/
return true;
}
/*
* Sends the decoded DML over wire.
*
* This is called both in streaming and non-streaming modes.
*/
static void
pgoutput_change(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
Relation relation, ReorderBufferChange *change)
{
PGOutputData *data = (PGOutputData *) ctx->output_plugin_private;
MemoryContext old;
RelationSyncEntry *relentry;
TransactionId xid = InvalidTransactionId;
Relation ancestor = NULL;
Relation targetrel = relation;
ReorderBufferChangeType action = change->action;
TupleTableSlot *old_slot = NULL;
TupleTableSlot *new_slot = NULL;
if (!is_publishable_relation(relation))
return;
/*
* Remember the xid for the change in streaming mode. We need to send xid
* with each change in the streaming mode so that subscriber can make
* their association and on aborts, it can discard the corresponding
* changes.
*/
if (in_streaming)
xid = change->txn->xid;
relentry = get_rel_sync_entry(data, relation);
/* First check the table filter */
switch (action)
{
case REORDER_BUFFER_CHANGE_INSERT:
if (!relentry->pubactions.pubinsert)
return;
break;
case REORDER_BUFFER_CHANGE_UPDATE:
if (!relentry->pubactions.pubupdate)
return;
break;
case REORDER_BUFFER_CHANGE_DELETE:
if (!relentry->pubactions.pubdelete)
return;
break;
default:
Assert(false);
}
/* Avoid leaking memory by using and resetting our own context */
old = MemoryContextSwitchTo(data->context);
/* Send the data */
switch (action)
{
case REORDER_BUFFER_CHANGE_INSERT:
new_slot = relentry->new_slot;
ExecStoreHeapTuple(&change->data.tp.newtuple->tuple,
new_slot, false);
/* Switch relation if publishing via root. */
if (relentry->publish_as_relid != RelationGetRelid(relation))
{
Assert(relation->rd_rel->relispartition);
ancestor = RelationIdGetRelation(relentry->publish_as_relid);
targetrel = ancestor;
/* Convert tuple if needed. */
if (relentry->attrmap)
{
TupleDesc tupdesc = RelationGetDescr(targetrel);
new_slot = execute_attr_map_slot(relentry->attrmap,
new_slot,
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
}
}
/* Check row filter */
if (!pgoutput_row_filter(targetrel, NULL, &new_slot, relentry,
&action))
break;
/*
* Schema should be sent using the original relation because it
* also sends the ancestor's relation.
*/
maybe_send_schema(ctx, change, relation, relentry);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_insert(ctx->out, xid, targetrel, new_slot,
data->binary);
OutputPluginWrite(ctx, true);
break;
case REORDER_BUFFER_CHANGE_UPDATE:
if (change->data.tp.oldtuple)
{
old_slot = relentry->old_slot;
ExecStoreHeapTuple(&change->data.tp.oldtuple->tuple,
old_slot, false);
}
new_slot = relentry->new_slot;
ExecStoreHeapTuple(&change->data.tp.newtuple->tuple,
new_slot, false);
/* Switch relation if publishing via root. */
if (relentry->publish_as_relid != RelationGetRelid(relation))
{
Assert(relation->rd_rel->relispartition);
ancestor = RelationIdGetRelation(relentry->publish_as_relid);
targetrel = ancestor;
/* Convert tuples if needed. */
if (relentry->attrmap)
{
TupleDesc tupdesc = RelationGetDescr(targetrel);
if (old_slot)
old_slot = execute_attr_map_slot(relentry->attrmap,
old_slot,
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
new_slot = execute_attr_map_slot(relentry->attrmap,
new_slot,
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
}
}
/* Check row filter */
if (!pgoutput_row_filter(targetrel, old_slot, &new_slot,
relentry, &action))
break;
maybe_send_schema(ctx, change, relation, relentry);
OutputPluginPrepareWrite(ctx, true);
/*
* Updates could be transformed to inserts or deletes based on the
* results of the row filter for old and new tuple.
*/
switch (action)
{
case REORDER_BUFFER_CHANGE_INSERT:
logicalrep_write_insert(ctx->out, xid, targetrel,
new_slot, data->binary);
break;
case REORDER_BUFFER_CHANGE_UPDATE:
logicalrep_write_update(ctx->out, xid, targetrel,
old_slot, new_slot, data->binary);
break;
case REORDER_BUFFER_CHANGE_DELETE:
logicalrep_write_delete(ctx->out, xid, targetrel,
old_slot, data->binary);
break;
default:
Assert(false);
}
OutputPluginWrite(ctx, true);
break;
case REORDER_BUFFER_CHANGE_DELETE:
if (change->data.tp.oldtuple)
{
old_slot = relentry->old_slot;
ExecStoreHeapTuple(&change->data.tp.oldtuple->tuple,
old_slot, false);
/* Switch relation if publishing via root. */
if (relentry->publish_as_relid != RelationGetRelid(relation))
{
Assert(relation->rd_rel->relispartition);
ancestor = RelationIdGetRelation(relentry->publish_as_relid);
targetrel = ancestor;
/* Convert tuple if needed. */
if (relentry->attrmap)
{
TupleDesc tupdesc = RelationGetDescr(targetrel);
old_slot = execute_attr_map_slot(relentry->attrmap,
old_slot,
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
}
}
/* Check row filter */
if (!pgoutput_row_filter(targetrel, old_slot, &new_slot,
relentry, &action))
break;
maybe_send_schema(ctx, change, relation, relentry);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_delete(ctx->out, xid, targetrel,
old_slot, data->binary);
OutputPluginWrite(ctx, true);
}
else
elog(DEBUG1, "didn't send DELETE change because of missing oldtuple");
break;
default:
Assert(false);
}
if (RelationIsValid(ancestor))
{
RelationClose(ancestor);
ancestor = NULL;
}
/* Cleanup */
MemoryContextSwitchTo(old);
MemoryContextReset(data->context);
}
static void
pgoutput_truncate(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
int nrelations, Relation relations[], ReorderBufferChange *change)
{
PGOutputData *data = (PGOutputData *) ctx->output_plugin_private;
MemoryContext old;
RelationSyncEntry *relentry;
int i;
int nrelids;
Oid *relids;
TransactionId xid = InvalidTransactionId;
/* Remember the xid for the change in streaming mode. See pgoutput_change. */
if (in_streaming)
xid = change->txn->xid;
old = MemoryContextSwitchTo(data->context);
relids = palloc0(nrelations * sizeof(Oid));
nrelids = 0;
for (i = 0; i < nrelations; i++)
{
Relation relation = relations[i];
Oid relid = RelationGetRelid(relation);
if (!is_publishable_relation(relation))
continue;
relentry = get_rel_sync_entry(data, relation);
if (!relentry->pubactions.pubtruncate)
continue;
/*
* Don't send partitions if the publication wants to send only the
* root tables through it.
*/
if (relation->rd_rel->relispartition &&
relentry->publish_as_relid != relid)
continue;
relids[nrelids++] = relid;
maybe_send_schema(ctx, change, relation, relentry);
}
if (nrelids > 0)
{
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_truncate(ctx->out,
xid,
nrelids,
relids,
change->data.truncate.cascade,
change->data.truncate.restart_seqs);
OutputPluginWrite(ctx, true);
}
MemoryContextSwitchTo(old);
MemoryContextReset(data->context);
}
static void
pgoutput_message(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
XLogRecPtr message_lsn, bool transactional, const char *prefix, Size sz,
const char *message)
{
PGOutputData *data = (PGOutputData *) ctx->output_plugin_private;
TransactionId xid = InvalidTransactionId;
if (!data->messages)
return;
/*
* Remember the xid for the message in streaming mode. See
* pgoutput_change.
*/
if (in_streaming)
xid = txn->xid;
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_message(ctx->out,
xid,
message_lsn,
transactional,
prefix,
sz,
message);
OutputPluginWrite(ctx, true);
}
/*
* Currently we always forward.
*/
static bool
pgoutput_origin_filter(LogicalDecodingContext *ctx,
RepOriginId origin_id)
{
return false;
}
/*
* Shutdown the output plugin.
*
* Note, we don't need to clean the data->context and data->cachectx as
* they are child context of the ctx->context so it will be cleaned up by
* logical decoding machinery.
*/
static void
pgoutput_shutdown(LogicalDecodingContext *ctx)
{
if (RelationSyncCache)
{
hash_destroy(RelationSyncCache);
RelationSyncCache = NULL;
}
}
/*
* Load publications from the list of publication names.
*/
static List *
LoadPublications(List *pubnames)
{
List *result = NIL;
ListCell *lc;
foreach(lc, pubnames)
{
char *pubname = (char *) lfirst(lc);
Publication *pub = GetPublicationByName(pubname, false);
result = lappend(result, pub);
}
return result;
}
/*
* Publication syscache invalidation callback.
*
* Called for invalidations on pg_publication.
*/
static void
publication_invalidation_cb(Datum arg, int cacheid, uint32 hashvalue)
{
publications_valid = false;
/*
* Also invalidate per-relation cache so that next time the filtering info
* is checked it will be updated with the new publication settings.
*/
rel_sync_cache_publication_cb(arg, cacheid, hashvalue);
}
/*
* START STREAM callback
*/
static void
pgoutput_stream_start(struct LogicalDecodingContext *ctx,
ReorderBufferTXN *txn)
{
bool send_replication_origin = txn->origin_id != InvalidRepOriginId;
/* we can't nest streaming of transactions */
Assert(!in_streaming);
/*
* If we already sent the first stream for this transaction then don't
* send the origin id in the subsequent streams.
*/
if (rbtxn_is_streamed(txn))
send_replication_origin = false;
OutputPluginPrepareWrite(ctx, !send_replication_origin);
logicalrep_write_stream_start(ctx->out, txn->xid, !rbtxn_is_streamed(txn));
send_repl_origin(ctx, txn->origin_id, InvalidXLogRecPtr,
send_replication_origin);
OutputPluginWrite(ctx, true);
/* we're streaming a chunk of transaction now */
in_streaming = true;
}
/*
* STOP STREAM callback
*/
static void
pgoutput_stream_stop(struct LogicalDecodingContext *ctx,
ReorderBufferTXN *txn)
{
/* we should be streaming a trasanction */
Assert(in_streaming);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_stream_stop(ctx->out);
OutputPluginWrite(ctx, true);
/* we've stopped streaming a transaction */
in_streaming = false;
}
/*
* Notify downstream to discard the streamed transaction (along with all
* it's subtransactions, if it's a toplevel transaction).
*/
static void
pgoutput_stream_abort(struct LogicalDecodingContext *ctx,
ReorderBufferTXN *txn,
XLogRecPtr abort_lsn)
{
ReorderBufferTXN *toptxn;
/*
* The abort should happen outside streaming block, even for streamed
* transactions. The transaction has to be marked as streamed, though.
*/
Assert(!in_streaming);
/* determine the toplevel transaction */
toptxn = (txn->toptxn) ? txn->toptxn : txn;
Assert(rbtxn_is_streamed(toptxn));
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_stream_abort(ctx->out, toptxn->xid, txn->xid);
OutputPluginWrite(ctx, true);
cleanup_rel_sync_cache(toptxn->xid, false);
}
/*
* Notify downstream to apply the streamed transaction (along with all
* it's subtransactions).
*/
static void
pgoutput_stream_commit(struct LogicalDecodingContext *ctx,
ReorderBufferTXN *txn,
XLogRecPtr commit_lsn)
{
/*
* The commit should happen outside streaming block, even for streamed
* transactions. The transaction has to be marked as streamed, though.
*/
Assert(!in_streaming);
Assert(rbtxn_is_streamed(txn));
OutputPluginUpdateProgress(ctx);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_stream_commit(ctx->out, txn, commit_lsn);
OutputPluginWrite(ctx, true);
cleanup_rel_sync_cache(txn->xid, true);
}
/*
* PREPARE callback (for streaming two-phase commit).
*
* Notify the downstream to prepare the transaction.
*/
static void
pgoutput_stream_prepare_txn(LogicalDecodingContext *ctx,
ReorderBufferTXN *txn,
XLogRecPtr prepare_lsn)
{
Assert(rbtxn_is_streamed(txn));
OutputPluginUpdateProgress(ctx);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_stream_prepare(ctx->out, txn, prepare_lsn);
OutputPluginWrite(ctx, true);
}
/*
* Initialize the relation schema sync cache for a decoding session.
*
* The hash table is destroyed at the end of a decoding session. While
* relcache invalidations still exist and will still be invoked, they
* will just see the null hash table global and take no action.
*/
static void
init_rel_sync_cache(MemoryContext cachectx)
{
HASHCTL ctl;
if (RelationSyncCache != NULL)
return;
/* Make a new hash table for the cache */
ctl.keysize = sizeof(Oid);
ctl.entrysize = sizeof(RelationSyncEntry);
ctl.hcxt = cachectx;
RelationSyncCache = hash_create("logical replication output relation cache",
128, &ctl,
HASH_ELEM | HASH_CONTEXT | HASH_BLOBS);
Assert(RelationSyncCache != NULL);
CacheRegisterRelcacheCallback(rel_sync_cache_relation_cb, (Datum) 0);
CacheRegisterSyscacheCallback(PUBLICATIONRELMAP,
rel_sync_cache_publication_cb,
(Datum) 0);
CacheRegisterSyscacheCallback(PUBLICATIONNAMESPACEMAP,
rel_sync_cache_publication_cb,
(Datum) 0);
}
/*
* We expect relatively small number of streamed transactions.
*/
static bool
get_schema_sent_in_streamed_txn(RelationSyncEntry *entry, TransactionId xid)
{
ListCell *lc;
foreach(lc, entry->streamed_txns)
{
if (xid == (uint32) lfirst_int(lc))
return true;
}
return false;
}
/*
* Add the xid in the rel sync entry for which we have already sent the schema
* of the relation.
*/
static void
set_schema_sent_in_streamed_txn(RelationSyncEntry *entry, TransactionId xid)
{
MemoryContext oldctx;
oldctx = MemoryContextSwitchTo(CacheMemoryContext);
entry->streamed_txns = lappend_int(entry->streamed_txns, xid);
MemoryContextSwitchTo(oldctx);
}
/*
* Find or create entry in the relation schema cache.
*
* This looks up publications that the given relation is directly or
* indirectly part of (the latter if it's really the relation's ancestor that
* is part of a publication) and fills up the found entry with the information
* about which operations to publish and whether to use an ancestor's schema
* when publishing.
*/
static RelationSyncEntry *
get_rel_sync_entry(PGOutputData *data, Relation relation)
{
RelationSyncEntry *entry;
bool found;
MemoryContext oldctx;
Oid relid = RelationGetRelid(relation);
Assert(RelationSyncCache != NULL);
/* Find cached relation info, creating if not found */
entry = (RelationSyncEntry *) hash_search(RelationSyncCache,
(void *) &relid,
HASH_ENTER, &found);
Assert(entry != NULL);
/* initialize entry, if it's new */
if (!found)
{
entry->replicate_valid = false;
entry->schema_sent = false;
entry->streamed_txns = NIL;
entry->pubactions.pubinsert = entry->pubactions.pubupdate =
entry->pubactions.pubdelete = entry->pubactions.pubtruncate = false;
entry->new_slot = NULL;
entry->old_slot = NULL;
memset(entry->exprstate, 0, sizeof(entry->exprstate));
entry->cache_expr_cxt = NULL;
entry->publish_as_relid = InvalidOid;
entry->attrmap = NULL;
}
/* Validate the entry */
if (!entry->replicate_valid)
{
Oid schemaId = get_rel_namespace(relid);
List *pubids = GetRelationPublications(relid);
/*
* We don't acquire a lock on the namespace system table as we build
* the cache entry using a historic snapshot and all the later changes
* are absorbed while decoding WAL.
*/
List *schemaPubids = GetSchemaPublications(schemaId);
ListCell *lc;
Oid publish_as_relid = relid;
int publish_ancestor_level = 0;
bool am_partition = get_rel_relispartition(relid);
char relkind = get_rel_relkind(relid);
List *rel_publications = NIL;
/* Reload publications if needed before use. */
if (!publications_valid)
{
oldctx = MemoryContextSwitchTo(CacheMemoryContext);
if (data->publications)
{
list_free_deep(data->publications);
data->publications = NIL;
}
data->publications = LoadPublications(data->publication_names);
MemoryContextSwitchTo(oldctx);
publications_valid = true;
}
/*
* Reset schema_sent status as the relation definition may have
* changed. Also reset pubactions to empty in case rel was dropped
* from a publication. Also free any objects that depended on the
* earlier definition.
*/
entry->schema_sent = false;
list_free(entry->streamed_txns);
entry->streamed_txns = NIL;
entry->pubactions.pubinsert = false;
entry->pubactions.pubupdate = false;
entry->pubactions.pubdelete = false;
entry->pubactions.pubtruncate = false;
/*
* Tuple slots cleanups. (Will be rebuilt later if needed).
*/
if (entry->old_slot)
ExecDropSingleTupleTableSlot(entry->old_slot);
if (entry->new_slot)
ExecDropSingleTupleTableSlot(entry->new_slot);
entry->old_slot = NULL;
entry->new_slot = NULL;
if (entry->attrmap)
free_attrmap(entry->attrmap);
entry->attrmap = NULL;
/*
* Row filter cache cleanups.
*/
if (entry->cache_expr_cxt)
MemoryContextDelete(entry->cache_expr_cxt);
entry->cache_expr_cxt = NULL;
entry->estate = NULL;
memset(entry->exprstate, 0, sizeof(entry->exprstate));
/*
* Build publication cache. We can't use one provided by relcache as
* relcache considers all publications given relation is in, but here
* we only need to consider ones that the subscriber requested.
*/
foreach(lc, data->publications)
{
Publication *pub = lfirst(lc);
bool publish = false;
/*
* Under what relid should we publish changes in this publication?
* We'll use the top-most relid across all publications. Also track
* the ancestor level for this publication.
*/
Oid pub_relid = relid;
int ancestor_level = 0;
/*
* If this is a FOR ALL TABLES publication, pick the partition root
* and set the ancestor level accordingly.
*/
if (pub->alltables)
{
publish = true;
if (pub->pubviaroot && am_partition)
{
List *ancestors = get_partition_ancestors(relid);
pub_relid = llast_oid(ancestors);
ancestor_level = list_length(ancestors);
}
}
if (!publish)
{
bool ancestor_published = false;
/*
* For a partition, check if any of the ancestors are
* published. If so, note down the topmost ancestor that is
* published via this publication, which will be used as the
* relation via which to publish the partition's changes.
*/
if (am_partition)
{
Oid ancestor;
int level;
List *ancestors = get_partition_ancestors(relid);
ancestor = GetTopMostAncestorInPublication(pub->oid,
ancestors,
&level);
if (ancestor != InvalidOid)
{
ancestor_published = true;
if (pub->pubviaroot)
{
pub_relid = ancestor;
ancestor_level = level;
}
}
}
if (list_member_oid(pubids, pub->oid) ||
list_member_oid(schemaPubids, pub->oid) ||
ancestor_published)
publish = true;
}
/*
* Don't publish changes for partitioned tables, because
* publishing those of its partitions suffices, unless partition
* changes won't be published due to pubviaroot being set.
*/
if (publish &&
(relkind != RELKIND_PARTITIONED_TABLE || pub->pubviaroot))
{
entry->pubactions.pubinsert |= pub->pubactions.pubinsert;
entry->pubactions.pubupdate |= pub->pubactions.pubupdate;
entry->pubactions.pubdelete |= pub->pubactions.pubdelete;
entry->pubactions.pubtruncate |= pub->pubactions.pubtruncate;
rel_publications = lappend(rel_publications, pub);
/*
* We want to publish the changes as the top-most ancestor
* across all publications. So we need to check if the
* already calculated level is higher than the new one. If
* yes, we can ignore the new value (as it's a child).
* Otherwise the new value is an ancestor, so we keep it.
*/
if (publish_ancestor_level > ancestor_level)
continue;
/* The new value is an ancestor, so let's keep it. */
publish_as_relid = pub_relid;
publish_ancestor_level = ancestor_level;
}
}
entry->publish_as_relid = publish_as_relid;
/*
* Initialize the tuple slot, map, and row filter. These are only used
* when publishing inserts, updates, or deletes.
*/
if (entry->pubactions.pubinsert || entry->pubactions.pubupdate ||
entry->pubactions.pubdelete)
{
/* Initialize the tuple slot and map */
init_tuple_slot(data, relation, entry);
/* Initialize the row filter */
pgoutput_row_filter_init(data, rel_publications, entry);
}
list_free(pubids);
list_free(schemaPubids);
list_free(rel_publications);
entry->replicate_valid = true;
}
return entry;
}
/*
* Cleanup list of streamed transactions and update the schema_sent flag.
*
* When a streamed transaction commits or aborts, we need to remove the
* toplevel XID from the schema cache. If the transaction aborted, the
* subscriber will simply throw away the schema records we streamed, so
* we don't need to do anything else.
*
* If the transaction is committed, the subscriber will update the relation
* cache - so tweak the schema_sent flag accordingly.
*/
static void
cleanup_rel_sync_cache(TransactionId xid, bool is_commit)
{
HASH_SEQ_STATUS hash_seq;
RelationSyncEntry *entry;
ListCell *lc;
Assert(RelationSyncCache != NULL);
hash_seq_init(&hash_seq, RelationSyncCache);
while ((entry = hash_seq_search(&hash_seq)) != NULL)
{
/*
* We can set the schema_sent flag for an entry that has committed xid
* in the list as that ensures that the subscriber would have the
* corresponding schema and we don't need to send it unless there is
* any invalidation for that relation.
*/
foreach(lc, entry->streamed_txns)
{
if (xid == (uint32) lfirst_int(lc))
{
if (is_commit)
entry->schema_sent = true;
entry->streamed_txns =
foreach_delete_current(entry->streamed_txns, lc);
break;
}
}
}
}
/*
* Relcache invalidation callback
*/
static void
rel_sync_cache_relation_cb(Datum arg, Oid relid)
{
RelationSyncEntry *entry;
/*
* We can get here if the plugin was used in SQL interface as the
* RelSchemaSyncCache is destroyed when the decoding finishes, but there
* is no way to unregister the relcache invalidation callback.
*/
if (RelationSyncCache == NULL)
return;
/*
* Nobody keeps pointers to entries in this hash table around outside
* logical decoding callback calls - but invalidation events can come in
* *during* a callback if we do any syscache access in the callback.
* Because of that we must mark the cache entry as invalid but not damage
* any of its substructure here. The next get_rel_sync_entry() call will
* rebuild it all.
*/
if (OidIsValid(relid))
{
/*
* Getting invalidations for relations that aren't in the table is
* entirely normal. So we don't care if it's found or not.
*/
entry = (RelationSyncEntry *) hash_search(RelationSyncCache, &relid,
HASH_FIND, NULL);
if (entry != NULL)
entry->replicate_valid = false;
}
else
{
/* Whole cache must be flushed. */
HASH_SEQ_STATUS status;
hash_seq_init(&status, RelationSyncCache);
while ((entry = (RelationSyncEntry *) hash_seq_search(&status)) != NULL)
{
entry->replicate_valid = false;
}
}
}
/*
* Publication relation/schema map syscache invalidation callback
*
* Called for invalidations on pg_publication, pg_publication_rel, and
* pg_publication_namespace.
*/
static void
rel_sync_cache_publication_cb(Datum arg, int cacheid, uint32 hashvalue)
{
HASH_SEQ_STATUS status;
RelationSyncEntry *entry;
/*
* We can get here if the plugin was used in SQL interface as the
* RelSchemaSyncCache is destroyed when the decoding finishes, but there
* is no way to unregister the relcache invalidation callback.
*/
if (RelationSyncCache == NULL)
return;
/*
* There is no way to find which entry in our cache the hash belongs to so
* mark the whole cache as invalid.
*/
hash_seq_init(&status, RelationSyncCache);
while ((entry = (RelationSyncEntry *) hash_seq_search(&status)) != NULL)
{
entry->replicate_valid = false;
}
}
/* Send Replication origin */
static void
send_repl_origin(LogicalDecodingContext *ctx, RepOriginId origin_id,
XLogRecPtr origin_lsn, bool send_origin)
{
if (send_origin)
{
char *origin;
/*----------
* XXX: which behaviour do we want here?
*
* Alternatives:
* - don't send origin message if origin name not found
* (that's what we do now)
* - throw error - that will break replication, not good
* - send some special "unknown" origin
*----------
*/
if (replorigin_by_oid(origin_id, true, &origin))
{
/* Message boundary */
OutputPluginWrite(ctx, false);
OutputPluginPrepareWrite(ctx, true);
logicalrep_write_origin(ctx->out, origin, origin_lsn);
}
}
}