postgres/src/backend/executor/nodeSetOp.c
Tom Lane c106ef0807 Use BumpContext contexts in TupleHashTables, and do some code cleanup.
For all extant uses of TupleHashTables, execGrouping.c itself does
nothing with the "tablecxt" except to allocate new hash entries in it,
and the callers do nothing with it except to reset the whole context.
So this is an ideal use-case for a BumpContext, and the hash tables
are frequently big enough for the savings to be significant.

(Commit cc721c459 already taught nodeAgg.c this idea, but neglected
the other callers of BuildTupleHashTable.)

While at it, let's clean up some ill-advised leftovers from rebasing
TupleHashTables on simplehash.h:

* Many comments and variable names were based on the idea that the
tablecxt holds the whole TupleHashTable, whereas now it only holds the
hashed tuples (plus any caller-defined "additional storage").  Rename
to names like tuplescxt and tuplesContext, and adjust the comments.
Also adjust the memory context names to be like "<Foo> hashed tuples".

* Make ResetTupleHashTable() reset the tuplescxt rather than relying
on the caller to do so; that was fairly bizarre and seems like a
recipe for leaks.  This is less efficient in the case where nodeAgg.c
uses the same tuplescxt for several different hashtables, but only
microscopically so because mcxt.c will short-circuit the extra resets
via its isReset flag.  I judge the extra safety and intellectual
cleanliness well worth those few cycles.

* Remove the long-obsolete "allow_jit" check added by ac88807f9;
instead, just Assert that metacxt and tuplescxt are different.
We need that anyway for this definition of ResetTupleHashTable() to
be safe.

There is a side issue of the extent to which this change invalidates
the planner's estimates of hashtable memory consumption.  However,
those estimates are already pretty bad, so improving them seems like
it can be a separate project.  This change is useful to do first to
establish consistent executor behavior that the planner can expect.

A loose end not addressed here is that the "entrysize" calculation
in BuildTupleHashTable seems wrong: "sizeof(TupleHashEntryData) +
additionalsize" corresponds neither to the size of the simplehash
entries nor to the total space needed per tuple.  It's questionable
why BuildTupleHashTable is second-guessing its caller's nbuckets
choice at all, since the original source of the number should have had
more information.  But that all seems wrapped up with the planner's
estimation logic, so let's leave it for the planned followup patch.

Reported-by: Jeff Janes <jeff.janes@gmail.com>
Reported-by: David Rowley <dgrowleyml@gmail.com>
Author: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/CAMkU=1zia0JfW_QR8L5xA2vpa0oqVuiapm78h=WpNsHH13_9uw@mail.gmail.com
Discussion: https://postgr.es/m/2268409.1761512111@sss.pgh.pa.us
2025-10-30 11:21:22 -04:00

745 lines
20 KiB
C

/*-------------------------------------------------------------------------
*
* nodeSetOp.c
* Routines to handle INTERSECT and EXCEPT selection
*
* The input of a SetOp node consists of two relations (outer and inner)
* with identical column sets. In EXCEPT queries the outer relation is
* always the left side, while in INTERSECT cases the planner tries to
* make the outer relation be the smaller of the two inputs.
*
* In SETOP_SORTED mode, each input has been sorted according to all the
* grouping columns. The SetOp node essentially performs a merge join on
* the grouping columns, except that it is only interested in counting how
* many tuples from each input match. Then it is a simple matter to emit
* the output demanded by the SQL spec for INTERSECT, INTERSECT ALL, EXCEPT,
* or EXCEPT ALL.
*
* In SETOP_HASHED mode, the inputs are delivered in no particular order.
* We read the outer relation and build a hash table in memory with one entry
* for each group of identical tuples, counting the number of tuples in the
* group. Then we read the inner relation and count the number of tuples
* matching each outer group. (We can disregard any tuples appearing only
* in the inner relation, since they cannot result in any output.) After
* seeing all the input, we scan the hashtable and generate the correct
* output using those counts.
*
* This node type is not used for UNION or UNION ALL, since those can be
* implemented more cheaply (there's no need to count the number of
* matching tuples).
*
* Note that SetOp does no qual checking nor projection. The delivered
* output tuples are just copies of the first-to-arrive tuple in each
* input group.
*
*
* Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeSetOp.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "executor/executor.h"
#include "executor/nodeSetOp.h"
#include "miscadmin.h"
#include "utils/memutils.h"
/*
* SetOpStatePerGroupData - per-group working state
*
* In SETOP_SORTED mode, we need only one of these structs, and it's just a
* local in setop_retrieve_sorted. In SETOP_HASHED mode, the hash table
* contains one of these for each tuple group.
*/
typedef struct SetOpStatePerGroupData
{
int64 numLeft; /* number of left-input dups in group */
int64 numRight; /* number of right-input dups in group */
} SetOpStatePerGroupData;
typedef SetOpStatePerGroupData *SetOpStatePerGroup;
static TupleTableSlot *setop_retrieve_sorted(SetOpState *setopstate);
static void setop_load_group(SetOpStatePerInput *input, PlanState *inputPlan,
SetOpState *setopstate);
static int setop_compare_slots(TupleTableSlot *s1, TupleTableSlot *s2,
SetOpState *setopstate);
static void setop_fill_hash_table(SetOpState *setopstate);
static TupleTableSlot *setop_retrieve_hash_table(SetOpState *setopstate);
/*
* Initialize the hash table to empty.
*/
static void
build_hash_table(SetOpState *setopstate)
{
SetOp *node = (SetOp *) setopstate->ps.plan;
ExprContext *econtext = setopstate->ps.ps_ExprContext;
TupleDesc desc = ExecGetResultType(outerPlanState(setopstate));
Assert(node->strategy == SETOP_HASHED);
Assert(node->numGroups > 0);
/*
* If both child plans deliver the same fixed tuple slot type, we can tell
* BuildTupleHashTable to expect that slot type as input. Otherwise,
* we'll pass NULL denoting that any slot type is possible.
*/
setopstate->hashtable = BuildTupleHashTable(&setopstate->ps,
desc,
ExecGetCommonChildSlotOps(&setopstate->ps),
node->numCols,
node->cmpColIdx,
setopstate->eqfuncoids,
setopstate->hashfunctions,
node->cmpCollations,
node->numGroups,
sizeof(SetOpStatePerGroupData),
setopstate->ps.state->es_query_cxt,
setopstate->tuplesContext,
econtext->ecxt_per_tuple_memory,
false);
}
/*
* We've completed processing a tuple group. Decide how many copies (if any)
* of its representative row to emit, and store the count into numOutput.
* This logic is straight from the SQL92 specification.
*/
static void
set_output_count(SetOpState *setopstate, SetOpStatePerGroup pergroup)
{
SetOp *plannode = (SetOp *) setopstate->ps.plan;
switch (plannode->cmd)
{
case SETOPCMD_INTERSECT:
if (pergroup->numLeft > 0 && pergroup->numRight > 0)
setopstate->numOutput = 1;
else
setopstate->numOutput = 0;
break;
case SETOPCMD_INTERSECT_ALL:
setopstate->numOutput =
(pergroup->numLeft < pergroup->numRight) ?
pergroup->numLeft : pergroup->numRight;
break;
case SETOPCMD_EXCEPT:
if (pergroup->numLeft > 0 && pergroup->numRight == 0)
setopstate->numOutput = 1;
else
setopstate->numOutput = 0;
break;
case SETOPCMD_EXCEPT_ALL:
setopstate->numOutput =
(pergroup->numLeft < pergroup->numRight) ?
0 : (pergroup->numLeft - pergroup->numRight);
break;
default:
elog(ERROR, "unrecognized set op: %d", (int) plannode->cmd);
break;
}
}
/* ----------------------------------------------------------------
* ExecSetOp
* ----------------------------------------------------------------
*/
static TupleTableSlot * /* return: a tuple or NULL */
ExecSetOp(PlanState *pstate)
{
SetOpState *node = castNode(SetOpState, pstate);
SetOp *plannode = (SetOp *) node->ps.plan;
TupleTableSlot *resultTupleSlot = node->ps.ps_ResultTupleSlot;
CHECK_FOR_INTERRUPTS();
/*
* If the previously-returned tuple needs to be returned more than once,
* keep returning it.
*/
if (node->numOutput > 0)
{
node->numOutput--;
return resultTupleSlot;
}
/* Otherwise, we're done if we are out of groups */
if (node->setop_done)
return NULL;
/* Fetch the next tuple group according to the correct strategy */
if (plannode->strategy == SETOP_HASHED)
{
if (!node->table_filled)
setop_fill_hash_table(node);
return setop_retrieve_hash_table(node);
}
else
return setop_retrieve_sorted(node);
}
/*
* ExecSetOp for non-hashed case
*/
static TupleTableSlot *
setop_retrieve_sorted(SetOpState *setopstate)
{
PlanState *outerPlan;
PlanState *innerPlan;
TupleTableSlot *resultTupleSlot;
/*
* get state info from node
*/
outerPlan = outerPlanState(setopstate);
innerPlan = innerPlanState(setopstate);
resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;
/*
* If first time through, establish the invariant that setop_load_group
* expects: each side's nextTupleSlot is the next output from the child
* plan, or empty if there is no more output from it.
*/
if (setopstate->need_init)
{
setopstate->need_init = false;
setopstate->leftInput.nextTupleSlot = ExecProcNode(outerPlan);
/*
* If the outer relation is empty, then we will emit nothing, and we
* don't need to read the inner relation at all.
*/
if (TupIsNull(setopstate->leftInput.nextTupleSlot))
{
setopstate->setop_done = true;
return NULL;
}
setopstate->rightInput.nextTupleSlot = ExecProcNode(innerPlan);
/* Set flags that we've not completed either side's group */
setopstate->leftInput.needGroup = true;
setopstate->rightInput.needGroup = true;
}
/*
* We loop retrieving groups until we find one we should return
*/
while (!setopstate->setop_done)
{
int cmpresult;
SetOpStatePerGroupData pergroup;
/*
* Fetch the rest of the current outer group, if we didn't already.
*/
if (setopstate->leftInput.needGroup)
setop_load_group(&setopstate->leftInput, outerPlan, setopstate);
/*
* If no more outer groups, we're done, and don't need to look at any
* more of the inner relation.
*/
if (setopstate->leftInput.numTuples == 0)
{
setopstate->setop_done = true;
break;
}
/*
* Fetch the rest of the current inner group, if we didn't already.
*/
if (setopstate->rightInput.needGroup)
setop_load_group(&setopstate->rightInput, innerPlan, setopstate);
/*
* Determine whether we have matching groups on both sides (this is
* basically like the core logic of a merge join).
*/
if (setopstate->rightInput.numTuples == 0)
cmpresult = -1; /* as though left input is lesser */
else
cmpresult = setop_compare_slots(setopstate->leftInput.firstTupleSlot,
setopstate->rightInput.firstTupleSlot,
setopstate);
if (cmpresult < 0)
{
/* Left group is first, and has no right matches */
pergroup.numLeft = setopstate->leftInput.numTuples;
pergroup.numRight = 0;
/* We'll need another left group next time */
setopstate->leftInput.needGroup = true;
}
else if (cmpresult == 0)
{
/* We have matching groups */
pergroup.numLeft = setopstate->leftInput.numTuples;
pergroup.numRight = setopstate->rightInput.numTuples;
/* We'll need to read from both sides next time */
setopstate->leftInput.needGroup = true;
setopstate->rightInput.needGroup = true;
}
else
{
/* Right group has no left matches, so we can ignore it */
setopstate->rightInput.needGroup = true;
continue;
}
/*
* Done scanning these input tuple groups. See if we should emit any
* copies of result tuple, and if so return the first copy. (Note
* that the result tuple is the same as the left input's firstTuple
* slot.)
*/
set_output_count(setopstate, &pergroup);
if (setopstate->numOutput > 0)
{
setopstate->numOutput--;
return resultTupleSlot;
}
}
/* No more groups */
ExecClearTuple(resultTupleSlot);
return NULL;
}
/*
* Load next group of tuples from one child plan or the other.
*
* On entry, we've already read the first tuple of the next group
* (if there is one) into input->nextTupleSlot. This invariant
* is maintained on exit.
*/
static void
setop_load_group(SetOpStatePerInput *input, PlanState *inputPlan,
SetOpState *setopstate)
{
input->needGroup = false;
/* If we've exhausted this child plan, report an empty group */
if (TupIsNull(input->nextTupleSlot))
{
ExecClearTuple(input->firstTupleSlot);
input->numTuples = 0;
return;
}
/* Make a local copy of the first tuple for comparisons */
ExecStoreMinimalTuple(ExecCopySlotMinimalTuple(input->nextTupleSlot),
input->firstTupleSlot,
true);
/* and count it */
input->numTuples = 1;
/* Scan till we find the end-of-group */
for (;;)
{
int cmpresult;
/* Get next input tuple, if there is one */
input->nextTupleSlot = ExecProcNode(inputPlan);
if (TupIsNull(input->nextTupleSlot))
break;
/* There is; does it belong to same group as firstTuple? */
cmpresult = setop_compare_slots(input->firstTupleSlot,
input->nextTupleSlot,
setopstate);
Assert(cmpresult <= 0); /* else input is mis-sorted */
if (cmpresult != 0)
break;
/* Still in same group, so count this tuple */
input->numTuples++;
}
}
/*
* Compare the tuples in the two given slots.
*/
static int
setop_compare_slots(TupleTableSlot *s1, TupleTableSlot *s2,
SetOpState *setopstate)
{
/* We'll often need to fetch all the columns, so just do it */
slot_getallattrs(s1);
slot_getallattrs(s2);
for (int nkey = 0; nkey < setopstate->numCols; nkey++)
{
SortSupport sortKey = setopstate->sortKeys + nkey;
AttrNumber attno = sortKey->ssup_attno;
Datum datum1 = s1->tts_values[attno - 1],
datum2 = s2->tts_values[attno - 1];
bool isNull1 = s1->tts_isnull[attno - 1],
isNull2 = s2->tts_isnull[attno - 1];
int compare;
compare = ApplySortComparator(datum1, isNull1,
datum2, isNull2,
sortKey);
if (compare != 0)
return compare;
}
return 0;
}
/*
* ExecSetOp for hashed case: phase 1, read inputs and build hash table
*/
static void
setop_fill_hash_table(SetOpState *setopstate)
{
PlanState *outerPlan;
PlanState *innerPlan;
ExprContext *econtext = setopstate->ps.ps_ExprContext;
bool have_tuples = false;
/*
* get state info from node
*/
outerPlan = outerPlanState(setopstate);
innerPlan = innerPlanState(setopstate);
/*
* Process each outer-plan tuple, and then fetch the next one, until we
* exhaust the outer plan.
*/
for (;;)
{
TupleTableSlot *outerslot;
TupleHashTable hashtable = setopstate->hashtable;
TupleHashEntryData *entry;
SetOpStatePerGroup pergroup;
bool isnew;
outerslot = ExecProcNode(outerPlan);
if (TupIsNull(outerslot))
break;
have_tuples = true;
/* Find or build hashtable entry for this tuple's group */
entry = LookupTupleHashEntry(hashtable,
outerslot,
&isnew, NULL);
pergroup = TupleHashEntryGetAdditional(hashtable, entry);
/* If new tuple group, initialize counts to zero */
if (isnew)
{
pergroup->numLeft = 0;
pergroup->numRight = 0;
}
/* Advance the counts */
pergroup->numLeft++;
/* Must reset expression context after each hashtable lookup */
ResetExprContext(econtext);
}
/*
* If the outer relation is empty, then we will emit nothing, and we don't
* need to read the inner relation at all.
*/
if (have_tuples)
{
/*
* Process each inner-plan tuple, and then fetch the next one, until
* we exhaust the inner plan.
*/
for (;;)
{
TupleTableSlot *innerslot;
TupleHashTable hashtable = setopstate->hashtable;
TupleHashEntryData *entry;
innerslot = ExecProcNode(innerPlan);
if (TupIsNull(innerslot))
break;
/* For tuples not seen previously, do not make hashtable entry */
entry = LookupTupleHashEntry(hashtable,
innerslot,
NULL, NULL);
/* Advance the counts if entry is already present */
if (entry)
{
SetOpStatePerGroup pergroup = TupleHashEntryGetAdditional(hashtable, entry);
pergroup->numRight++;
}
/* Must reset expression context after each hashtable lookup */
ResetExprContext(econtext);
}
}
setopstate->table_filled = true;
/* Initialize to walk the hash table */
ResetTupleHashIterator(setopstate->hashtable, &setopstate->hashiter);
}
/*
* ExecSetOp for hashed case: phase 2, retrieving groups from hash table
*/
static TupleTableSlot *
setop_retrieve_hash_table(SetOpState *setopstate)
{
TupleHashEntry entry;
TupleTableSlot *resultTupleSlot;
/*
* get state info from node
*/
resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;
/*
* We loop retrieving groups until we find one we should return
*/
while (!setopstate->setop_done)
{
TupleHashTable hashtable = setopstate->hashtable;
SetOpStatePerGroup pergroup;
CHECK_FOR_INTERRUPTS();
/*
* Find the next entry in the hash table
*/
entry = ScanTupleHashTable(hashtable, &setopstate->hashiter);
if (entry == NULL)
{
/* No more entries in hashtable, so done */
setopstate->setop_done = true;
return NULL;
}
/*
* See if we should emit any copies of this tuple, and if so return
* the first copy.
*/
pergroup = TupleHashEntryGetAdditional(hashtable, entry);
set_output_count(setopstate, pergroup);
if (setopstate->numOutput > 0)
{
setopstate->numOutput--;
return ExecStoreMinimalTuple(TupleHashEntryGetTuple(entry),
resultTupleSlot,
false);
}
}
/* No more groups */
ExecClearTuple(resultTupleSlot);
return NULL;
}
/* ----------------------------------------------------------------
* ExecInitSetOp
*
* This initializes the setop node state structures and
* the node's subplan.
* ----------------------------------------------------------------
*/
SetOpState *
ExecInitSetOp(SetOp *node, EState *estate, int eflags)
{
SetOpState *setopstate;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
* create state structure
*/
setopstate = makeNode(SetOpState);
setopstate->ps.plan = (Plan *) node;
setopstate->ps.state = estate;
setopstate->ps.ExecProcNode = ExecSetOp;
setopstate->setop_done = false;
setopstate->numOutput = 0;
setopstate->numCols = node->numCols;
setopstate->need_init = true;
/*
* create expression context
*/
ExecAssignExprContext(estate, &setopstate->ps);
/*
* If hashing, we also need a longer-lived context to store the hash
* table. The table can't just be kept in the per-query context because
* we want to be able to throw it away in ExecReScanSetOp. We can use a
* BumpContext to save storage, because we will have no need to delete
* individual table entries.
*/
if (node->strategy == SETOP_HASHED)
setopstate->tuplesContext =
BumpContextCreate(CurrentMemoryContext,
"SetOp hashed tuples",
ALLOCSET_DEFAULT_SIZES);
/*
* initialize child nodes
*
* If we are hashing then the child plans do not need to handle REWIND
* efficiently; see ExecReScanSetOp.
*/
if (node->strategy == SETOP_HASHED)
eflags &= ~EXEC_FLAG_REWIND;
outerPlanState(setopstate) = ExecInitNode(outerPlan(node), estate, eflags);
innerPlanState(setopstate) = ExecInitNode(innerPlan(node), estate, eflags);
/*
* Initialize locally-allocated slots. In hashed mode, we just need a
* result slot. In sorted mode, we need one first-tuple-of-group slot for
* each input; we use the result slot for the left input's slot and create
* another for the right input. (Note: the nextTupleSlot slots are not
* ours, but just point to the last slot returned by the input plan node.)
*/
ExecInitResultTupleSlotTL(&setopstate->ps, &TTSOpsMinimalTuple);
if (node->strategy != SETOP_HASHED)
{
setopstate->leftInput.firstTupleSlot =
setopstate->ps.ps_ResultTupleSlot;
setopstate->rightInput.firstTupleSlot =
ExecInitExtraTupleSlot(estate,
setopstate->ps.ps_ResultTupleDesc,
&TTSOpsMinimalTuple);
}
/* Setop nodes do no projections. */
setopstate->ps.ps_ProjInfo = NULL;
/*
* Precompute fmgr lookup data for inner loop. We need equality and
* hashing functions to do it by hashing, while for sorting we need
* SortSupport data.
*/
if (node->strategy == SETOP_HASHED)
execTuplesHashPrepare(node->numCols,
node->cmpOperators,
&setopstate->eqfuncoids,
&setopstate->hashfunctions);
else
{
int nkeys = node->numCols;
setopstate->sortKeys = (SortSupport)
palloc0(nkeys * sizeof(SortSupportData));
for (int i = 0; i < nkeys; i++)
{
SortSupport sortKey = setopstate->sortKeys + i;
sortKey->ssup_cxt = CurrentMemoryContext;
sortKey->ssup_collation = node->cmpCollations[i];
sortKey->ssup_nulls_first = node->cmpNullsFirst[i];
sortKey->ssup_attno = node->cmpColIdx[i];
/* abbreviated key conversion is not useful here */
sortKey->abbreviate = false;
PrepareSortSupportFromOrderingOp(node->cmpOperators[i], sortKey);
}
}
/* Create a hash table if needed */
if (node->strategy == SETOP_HASHED)
{
build_hash_table(setopstate);
setopstate->table_filled = false;
}
return setopstate;
}
/* ----------------------------------------------------------------
* ExecEndSetOp
*
* This shuts down the subplans and frees resources allocated
* to this node.
* ----------------------------------------------------------------
*/
void
ExecEndSetOp(SetOpState *node)
{
/* free subsidiary stuff including hashtable data */
if (node->tuplesContext)
MemoryContextDelete(node->tuplesContext);
ExecEndNode(outerPlanState(node));
ExecEndNode(innerPlanState(node));
}
void
ExecReScanSetOp(SetOpState *node)
{
PlanState *outerPlan = outerPlanState(node);
PlanState *innerPlan = innerPlanState(node);
ExecClearTuple(node->ps.ps_ResultTupleSlot);
node->setop_done = false;
node->numOutput = 0;
if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED)
{
/*
* In the hashed case, if we haven't yet built the hash table then we
* can just return; nothing done yet, so nothing to undo. If subnode's
* chgParam is not NULL then it will be re-scanned by ExecProcNode,
* else no reason to re-scan it at all.
*/
if (!node->table_filled)
return;
/*
* If we do have the hash table and the subplans do not have any
* parameter changes, then we can just rescan the existing hash table;
* no need to build it again.
*/
if (outerPlan->chgParam == NULL && innerPlan->chgParam == NULL)
{
ResetTupleHashIterator(node->hashtable, &node->hashiter);
return;
}
/* Else, we must rebuild the hashtable */
ResetTupleHashTable(node->hashtable);
node->table_filled = false;
}
else
{
/* Need to re-read first input from each side */
node->need_init = true;
}
/*
* if chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode.
*/
if (outerPlan->chgParam == NULL)
ExecReScan(outerPlan);
if (innerPlan->chgParam == NULL)
ExecReScan(innerPlan);
}