mirror of
https://github.com/zebrajr/postgres.git
synced 2025-12-07 00:20:24 +01:00
from the other string-category types; this eliminates a lot of surprising interpretations that the parser could formerly make when there was no directly applicable operator. Create a general mechanism that supports casts to and from the standard string types (text,varchar,bpchar) for *every* datatype, by invoking the datatype's I/O functions. These new casts are assignment-only in the to-string direction, explicit-only in the other, and therefore should create no surprising behavior. Remove a bunch of thereby-obsoleted datatype-specific casting functions. The "general mechanism" is a new expression node type CoerceViaIO that can actually convert between *any* two datatypes if their external text representations are compatible. This is more general than needed for the immediate feature, but might be useful in plpgsql or other places in future. This commit does nothing about the issue that applying the concatenation operator || to non-text types will now fail, often with strange error messages due to misinterpreting the operator as array concatenation. Since it often (not always) worked before, we should either make it succeed or at least give a more user-friendly error; but details are still under debate. Peter Eisentraut and Tom Lane
2752 lines
58 KiB
C
2752 lines
58 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* float.c
|
|
* Functions for the built-in floating-point types.
|
|
*
|
|
* Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/utils/adt/float.c,v 1.150 2007/06/05 21:31:06 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "utils/array.h"
|
|
#include "utils/builtins.h"
|
|
|
|
|
|
#ifndef M_PI
|
|
/* from my RH5.2 gcc math.h file - thomas 2000-04-03 */
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
/* Visual C++ etc lacks NAN, and won't accept 0.0/0.0. NAN definition from
|
|
* http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrfNotNumberNANItems.asp
|
|
*/
|
|
#if defined(WIN32) && !defined(NAN)
|
|
static const uint32 nan[2] = {0xffffffff, 0x7fffffff};
|
|
|
|
#define NAN (*(const double *) nan)
|
|
#endif
|
|
|
|
/* not sure what the following should be, but better to make it over-sufficient */
|
|
#define MAXFLOATWIDTH 64
|
|
#define MAXDOUBLEWIDTH 128
|
|
|
|
/*
|
|
* check to see if a float4/8 val has underflowed or overflowed
|
|
*/
|
|
#define CHECKFLOATVAL(val, inf_is_valid, zero_is_valid) \
|
|
do { \
|
|
if (isinf(val) && !(inf_is_valid)) \
|
|
ereport(ERROR, \
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), \
|
|
errmsg("value out of range: overflow"))); \
|
|
\
|
|
if ((val) == 0.0 && !(zero_is_valid)) \
|
|
ereport(ERROR, \
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), \
|
|
errmsg("value out of range: underflow"))); \
|
|
} while(0)
|
|
|
|
|
|
/* ========== USER I/O ROUTINES ========== */
|
|
|
|
|
|
/* Configurable GUC parameter */
|
|
int extra_float_digits = 0; /* Added to DBL_DIG or FLT_DIG */
|
|
|
|
|
|
static int float4_cmp_internal(float4 a, float4 b);
|
|
static int float8_cmp_internal(float8 a, float8 b);
|
|
|
|
#ifndef HAVE_CBRT
|
|
static double cbrt(double x);
|
|
#endif /* HAVE_CBRT */
|
|
|
|
|
|
/*
|
|
* Routines to provide reasonably platform-independent handling of
|
|
* infinity and NaN. We assume that isinf() and isnan() are available
|
|
* and work per spec. (On some platforms, we have to supply our own;
|
|
* see src/port.) However, generating an Infinity or NaN in the first
|
|
* place is less well standardized; pre-C99 systems tend not to have C99's
|
|
* INFINITY and NAN macros. We centralize our workarounds for this here.
|
|
*/
|
|
|
|
double
|
|
get_float8_infinity(void)
|
|
{
|
|
#ifdef INFINITY
|
|
/* C99 standard way */
|
|
return (double) INFINITY;
|
|
#else
|
|
|
|
/*
|
|
* On some platforms, HUGE_VAL is an infinity, elsewhere it's just the
|
|
* largest normal double. We assume forcing an overflow will get us a
|
|
* true infinity.
|
|
*/
|
|
return (double) (HUGE_VAL * HUGE_VAL);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
get_float4_infinity(void)
|
|
{
|
|
#ifdef INFINITY
|
|
/* C99 standard way */
|
|
return (float) INFINITY;
|
|
#else
|
|
|
|
/*
|
|
* On some platforms, HUGE_VAL is an infinity, elsewhere it's just the
|
|
* largest normal double. We assume forcing an overflow will get us a
|
|
* true infinity.
|
|
*/
|
|
return (float) (HUGE_VAL * HUGE_VAL);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
get_float8_nan(void)
|
|
{
|
|
#ifdef NAN
|
|
/* C99 standard way */
|
|
return (double) NAN;
|
|
#else
|
|
/* Assume we can get a NAN via zero divide */
|
|
return (double) (0.0 / 0.0);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
get_float4_nan(void)
|
|
{
|
|
#ifdef NAN
|
|
/* C99 standard way */
|
|
return (float) NAN;
|
|
#else
|
|
/* Assume we can get a NAN via zero divide */
|
|
return (float) (0.0 / 0.0);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns -1 if 'val' represents negative infinity, 1 if 'val'
|
|
* represents (positive) infinity, and 0 otherwise. On some platforms,
|
|
* this is equivalent to the isinf() macro, but not everywhere: C99
|
|
* does not specify that isinf() needs to distinguish between positive
|
|
* and negative infinity.
|
|
*/
|
|
int
|
|
is_infinite(double val)
|
|
{
|
|
int inf = isinf(val);
|
|
|
|
if (inf == 0)
|
|
return 0;
|
|
else if (val > 0)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
|
|
/*
|
|
* float4in - converts "num" to float
|
|
* restricted syntax:
|
|
* {<sp>} [+|-] {digit} [.{digit}] [<exp>]
|
|
* where <sp> is a space, digit is 0-9,
|
|
* <exp> is "e" or "E" followed by an integer.
|
|
*/
|
|
Datum
|
|
float4in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
char *orig_num;
|
|
double val;
|
|
char *endptr;
|
|
|
|
/*
|
|
* endptr points to the first character _after_ the sequence we recognized
|
|
* as a valid floating point number. orig_num points to the original input
|
|
* string.
|
|
*/
|
|
orig_num = num;
|
|
|
|
/*
|
|
* Check for an empty-string input to begin with, to avoid the vagaries of
|
|
* strtod() on different platforms.
|
|
*/
|
|
if (*num == '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type real: \"%s\"",
|
|
orig_num)));
|
|
|
|
/* skip leading whitespace */
|
|
while (*num != '\0' && isspace((unsigned char) *num))
|
|
num++;
|
|
|
|
errno = 0;
|
|
val = strtod(num, &endptr);
|
|
|
|
/* did we not see anything that looks like a double? */
|
|
if (endptr == num || errno != 0)
|
|
{
|
|
/*
|
|
* C99 requires that strtod() accept NaN and [-]Infinity, but not all
|
|
* platforms support that yet (and some accept them but set ERANGE
|
|
* anyway...) Therefore, we check for these inputs ourselves.
|
|
*/
|
|
if (pg_strncasecmp(num, "NaN", 3) == 0)
|
|
{
|
|
val = get_float4_nan();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float4_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (errno == ERANGE)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("\"%s\" is out of range for type real",
|
|
orig_num)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type real: \"%s\"",
|
|
orig_num)));
|
|
}
|
|
#ifdef HAVE_BUGGY_SOLARIS_STRTOD
|
|
else
|
|
{
|
|
/*
|
|
* Many versions of Solaris have a bug wherein strtod sets endptr to
|
|
* point one byte beyond the end of the string when given "inf" or
|
|
* "infinity".
|
|
*/
|
|
if (endptr != num && endptr[-1] == '\0')
|
|
endptr--;
|
|
}
|
|
#endif /* HAVE_BUGGY_SOLARIS_STRTOD */
|
|
|
|
#ifdef HAVE_BUGGY_IRIX_STRTOD
|
|
/*
|
|
* In some IRIX versions, strtod() recognizes only "inf", so if the
|
|
* input is "infinity" we have to skip over "inity". Also, it may
|
|
* return positive infinity for "-inf".
|
|
*/
|
|
if (isinf(val))
|
|
{
|
|
if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float4_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "-inf", 4) == 0)
|
|
{
|
|
val = -get_float4_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
}
|
|
#endif /* HAVE_BUGGY_IRIX_STRTOD */
|
|
|
|
/* skip trailing whitespace */
|
|
while (*endptr != '\0' && isspace((unsigned char) *endptr))
|
|
endptr++;
|
|
|
|
/* if there is any junk left at the end of the string, bail out */
|
|
if (*endptr != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type real: \"%s\"",
|
|
orig_num)));
|
|
|
|
/*
|
|
* if we get here, we have a legal double, still need to check to see if
|
|
* it's a legal float4
|
|
*/
|
|
CHECKFLOATVAL((float4) val, isinf(val), val == 0);
|
|
|
|
PG_RETURN_FLOAT4((float4) val);
|
|
}
|
|
|
|
/*
|
|
* float4out - converts a float4 number to a string
|
|
* using a standard output format
|
|
*/
|
|
Datum
|
|
float4out(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
char *ascii = (char *) palloc(MAXFLOATWIDTH + 1);
|
|
|
|
if (isnan(num))
|
|
PG_RETURN_CSTRING(strcpy(ascii, "NaN"));
|
|
|
|
switch (is_infinite(num))
|
|
{
|
|
case 1:
|
|
strcpy(ascii, "Infinity");
|
|
break;
|
|
case -1:
|
|
strcpy(ascii, "-Infinity");
|
|
break;
|
|
default:
|
|
{
|
|
int ndig = FLT_DIG + extra_float_digits;
|
|
|
|
if (ndig < 1)
|
|
ndig = 1;
|
|
|
|
sprintf(ascii, "%.*g", ndig, num);
|
|
}
|
|
}
|
|
|
|
PG_RETURN_CSTRING(ascii);
|
|
}
|
|
|
|
/*
|
|
* float4recv - converts external binary format to float4
|
|
*/
|
|
Datum
|
|
float4recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_FLOAT4(pq_getmsgfloat4(buf));
|
|
}
|
|
|
|
/*
|
|
* float4send - converts float4 to binary format
|
|
*/
|
|
Datum
|
|
float4send(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat4(&buf, num);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
/*
|
|
* float8in - converts "num" to float8
|
|
* restricted syntax:
|
|
* {<sp>} [+|-] {digit} [.{digit}] [<exp>]
|
|
* where <sp> is a space, digit is 0-9,
|
|
* <exp> is "e" or "E" followed by an integer.
|
|
*/
|
|
Datum
|
|
float8in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
char *orig_num;
|
|
double val;
|
|
char *endptr;
|
|
|
|
/*
|
|
* endptr points to the first character _after_ the sequence we recognized
|
|
* as a valid floating point number. orig_num points to the original input
|
|
* string.
|
|
*/
|
|
orig_num = num;
|
|
|
|
/*
|
|
* Check for an empty-string input to begin with, to avoid the vagaries of
|
|
* strtod() on different platforms.
|
|
*/
|
|
if (*num == '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
orig_num)));
|
|
|
|
/* skip leading whitespace */
|
|
while (*num != '\0' && isspace((unsigned char) *num))
|
|
num++;
|
|
|
|
errno = 0;
|
|
val = strtod(num, &endptr);
|
|
|
|
/* did we not see anything that looks like a double? */
|
|
if (endptr == num || errno != 0)
|
|
{
|
|
/*
|
|
* C99 requires that strtod() accept NaN and [-]Infinity, but not all
|
|
* platforms support that yet (and some accept them but set ERANGE
|
|
* anyway...) Therefore, we check for these inputs ourselves.
|
|
*/
|
|
if (pg_strncasecmp(num, "NaN", 3) == 0)
|
|
{
|
|
val = get_float8_nan();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float8_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (errno == ERANGE)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("\"%s\" is out of range for type double precision",
|
|
orig_num)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
orig_num)));
|
|
}
|
|
#ifdef HAVE_BUGGY_SOLARIS_STRTOD
|
|
else
|
|
{
|
|
/*
|
|
* Many versions of Solaris have a bug wherein strtod sets endptr to
|
|
* point one byte beyond the end of the string when given "inf" or
|
|
* "infinity".
|
|
*/
|
|
if (endptr != num && endptr[-1] == '\0')
|
|
endptr--;
|
|
}
|
|
#endif /* HAVE_BUGGY_SOLARIS_STRTOD */
|
|
|
|
#ifdef HAVE_BUGGY_IRIX_STRTOD
|
|
/*
|
|
* In some IRIX versions, strtod() recognizes only "inf", so if the
|
|
* input is "infinity" we have to skip over "inity". Also, it may
|
|
* return positive infinity for "-inf".
|
|
*/
|
|
if (isinf(val))
|
|
{
|
|
if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float8_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "-inf", 4) == 0)
|
|
{
|
|
val = -get_float8_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
}
|
|
#endif /* HAVE_BUGGY_IRIX_STRTOD */
|
|
|
|
/* skip trailing whitespace */
|
|
while (*endptr != '\0' && isspace((unsigned char) *endptr))
|
|
endptr++;
|
|
|
|
/* if there is any junk left at the end of the string, bail out */
|
|
if (*endptr != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
orig_num)));
|
|
|
|
CHECKFLOATVAL(val, true, true);
|
|
|
|
PG_RETURN_FLOAT8(val);
|
|
}
|
|
|
|
/*
|
|
* float8out - converts float8 number to a string
|
|
* using a standard output format
|
|
*/
|
|
Datum
|
|
float8out(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
char *ascii = (char *) palloc(MAXDOUBLEWIDTH + 1);
|
|
|
|
if (isnan(num))
|
|
PG_RETURN_CSTRING(strcpy(ascii, "NaN"));
|
|
|
|
switch (is_infinite(num))
|
|
{
|
|
case 1:
|
|
strcpy(ascii, "Infinity");
|
|
break;
|
|
case -1:
|
|
strcpy(ascii, "-Infinity");
|
|
break;
|
|
default:
|
|
{
|
|
int ndig = DBL_DIG + extra_float_digits;
|
|
|
|
if (ndig < 1)
|
|
ndig = 1;
|
|
|
|
sprintf(ascii, "%.*g", ndig, num);
|
|
}
|
|
}
|
|
|
|
PG_RETURN_CSTRING(ascii);
|
|
}
|
|
|
|
/*
|
|
* float8recv - converts external binary format to float8
|
|
*/
|
|
Datum
|
|
float8recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_FLOAT8(pq_getmsgfloat8(buf));
|
|
}
|
|
|
|
/*
|
|
* float8send - converts float8 to binary format
|
|
*/
|
|
Datum
|
|
float8send(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat8(&buf, num);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/* ========== PUBLIC ROUTINES ========== */
|
|
|
|
|
|
/*
|
|
* ======================
|
|
* FLOAT4 BASE OPERATIONS
|
|
* ======================
|
|
*/
|
|
|
|
/*
|
|
* float4abs - returns |arg1| (absolute value)
|
|
*/
|
|
Datum
|
|
float4abs(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) fabs(arg1));
|
|
}
|
|
|
|
/*
|
|
* float4um - returns -arg1 (unary minus)
|
|
*/
|
|
Datum
|
|
float4um(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 result;
|
|
|
|
result = ((arg1 != 0) ? -(arg1) : arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), true);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4up(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT4(arg);
|
|
}
|
|
|
|
Datum
|
|
float4larger(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (float4_cmp_internal(arg1, arg2) > 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (float4_cmp_internal(arg1, arg2) < 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
/*
|
|
* ======================
|
|
* FLOAT8 BASE OPERATIONS
|
|
* ======================
|
|
*/
|
|
|
|
/*
|
|
* float8abs - returns |arg1| (absolute value)
|
|
*/
|
|
Datum
|
|
float8abs(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(fabs(arg1));
|
|
}
|
|
|
|
|
|
/*
|
|
* float8um - returns -arg1 (unary minus)
|
|
*/
|
|
Datum
|
|
float8um(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = ((arg1 != 0) ? -(arg1) : arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8up(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(arg);
|
|
}
|
|
|
|
Datum
|
|
float8larger(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (float8_cmp_internal(arg1, arg2) > 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (float8_cmp_internal(arg1, arg2) < 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================
|
|
* ARITHMETIC OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float4pl - returns arg1 + arg2
|
|
* float4mi - returns arg1 - arg2
|
|
* float4mul - returns arg1 * arg2
|
|
* float4div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float4pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
result = arg1 + arg2;
|
|
/*
|
|
* There isn't any way to check for underflow of addition/subtraction
|
|
* because numbers near the underflow value have been already been
|
|
* to the point where we can't detect the that the two values
|
|
* were originally different, e.g. on x86, '1e-45'::float4 ==
|
|
* '2e-45'::float4 == 1.4013e-45.
|
|
*/
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
result = arg1 - arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
result = arg1 * arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4div(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
/* Do division in float8, then check for overflow */
|
|
result = arg1 / arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
/*
|
|
* float8pl - returns arg1 + arg2
|
|
* float8mi - returns arg1 - arg2
|
|
* float8mul - returns arg1 * arg2
|
|
* float8div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float8pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 + arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 - arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 * arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8div(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================
|
|
* COMPARISON OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float4{eq,ne,lt,le,gt,ge} - float4/float4 comparison operations
|
|
*/
|
|
static int
|
|
float4_cmp_internal(float4 a, float4 b)
|
|
{
|
|
/*
|
|
* We consider all NANs to be equal and larger than any non-NAN. This is
|
|
* somewhat arbitrary; the important thing is to have a consistent sort
|
|
* order.
|
|
*/
|
|
if (isnan(a))
|
|
{
|
|
if (isnan(b))
|
|
return 0; /* NAN = NAN */
|
|
else
|
|
return 1; /* NAN > non-NAN */
|
|
}
|
|
else if (isnan(b))
|
|
{
|
|
return -1; /* non-NAN < NAN */
|
|
}
|
|
else
|
|
{
|
|
if (a > b)
|
|
return 1;
|
|
else if (a < b)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float4eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float4ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float4lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float4le(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float4gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float4ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
Datum
|
|
btfloat4cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_INT32(float4_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
/*
|
|
* float8{eq,ne,lt,le,gt,ge} - float8/float8 comparison operations
|
|
*/
|
|
static int
|
|
float8_cmp_internal(float8 a, float8 b)
|
|
{
|
|
/*
|
|
* We consider all NANs to be equal and larger than any non-NAN. This is
|
|
* somewhat arbitrary; the important thing is to have a consistent sort
|
|
* order.
|
|
*/
|
|
if (isnan(a))
|
|
{
|
|
if (isnan(b))
|
|
return 0; /* NAN = NAN */
|
|
else
|
|
return 1; /* NAN > non-NAN */
|
|
}
|
|
else if (isnan(b))
|
|
{
|
|
return -1; /* non-NAN < NAN */
|
|
}
|
|
else
|
|
{
|
|
if (a > b)
|
|
return 1;
|
|
else if (a < b)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float8ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float8lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float8le(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float8gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float8ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
Datum
|
|
btfloat8cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
btfloat48cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
/* widen float4 to float8 and then compare */
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
btfloat84cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
/* widen float4 to float8 and then compare */
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
|
|
/*
|
|
* ===================
|
|
* CONVERSION ROUTINES
|
|
* ===================
|
|
*/
|
|
|
|
/*
|
|
* ftod - converts a float4 number to a float8 number
|
|
*/
|
|
Datum
|
|
ftod(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtof - converts a float8 number to a float4 number
|
|
*/
|
|
Datum
|
|
dtof(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
CHECKFLOATVAL((float4) num, isinf(num), num == 0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtoi4 - converts a float8 number to an int4 number
|
|
*/
|
|
Datum
|
|
dtoi4(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
int32 result;
|
|
|
|
/* 'Inf' is handled by INT_MAX */
|
|
if (num < INT_MIN || num > INT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
result = (int32) rint(num);
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtoi2 - converts a float8 number to an int2 number
|
|
*/
|
|
Datum
|
|
dtoi2(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
if (num < SHRT_MIN || num > SHRT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) rint(num));
|
|
}
|
|
|
|
|
|
/*
|
|
* i4tod - converts an int4 number to a float8 number
|
|
*/
|
|
Datum
|
|
i4tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 num = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i2tod - converts an int2 number to a float8 number
|
|
*/
|
|
Datum
|
|
i2tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 num = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* ftoi4 - converts a float4 number to an int4 number
|
|
*/
|
|
Datum
|
|
ftoi4(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
if (num < INT_MIN || num > INT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT32((int32) rint(num));
|
|
}
|
|
|
|
|
|
/*
|
|
* ftoi2 - converts a float4 number to an int2 number
|
|
*/
|
|
Datum
|
|
ftoi2(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
if (num < SHRT_MIN || num > SHRT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) rint(num));
|
|
}
|
|
|
|
|
|
/*
|
|
* i4tof - converts an int4 number to a float4 number
|
|
*/
|
|
Datum
|
|
i4tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 num = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i2tof - converts an int2 number to a float4 number
|
|
*/
|
|
Datum
|
|
i2tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 num = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* =======================
|
|
* RANDOM FLOAT8 OPERATORS
|
|
* =======================
|
|
*/
|
|
|
|
/*
|
|
* dround - returns ROUND(arg1)
|
|
*/
|
|
Datum
|
|
dround(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(rint(arg1));
|
|
}
|
|
|
|
/*
|
|
* dceil - returns the smallest integer greater than or
|
|
* equal to the specified float
|
|
*/
|
|
Datum
|
|
dceil(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(ceil(arg1));
|
|
}
|
|
|
|
/*
|
|
* dfloor - returns the largest integer lesser than or
|
|
* equal to the specified float
|
|
*/
|
|
Datum
|
|
dfloor(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(floor(arg1));
|
|
}
|
|
|
|
/*
|
|
* dsign - returns -1 if the argument is less than 0, 0
|
|
* if the argument is equal to 0, and 1 if the
|
|
* argument is greater than zero.
|
|
*/
|
|
Datum
|
|
dsign(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 > 0)
|
|
result = 1.0;
|
|
else if (arg1 < 0)
|
|
result = -1.0;
|
|
else
|
|
result = 0.0;
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* dtrunc - returns truncation-towards-zero of arg1,
|
|
* arg1 >= 0 ... the greatest integer less
|
|
* than or equal to arg1
|
|
* arg1 < 0 ... the least integer greater
|
|
* than or equal to arg1
|
|
*/
|
|
Datum
|
|
dtrunc(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 >= 0)
|
|
result = floor(arg1);
|
|
else
|
|
result = -floor(-arg1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsqrt - returns square root of arg1
|
|
*/
|
|
Datum
|
|
dsqrt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("cannot take square root of a negative number")));
|
|
|
|
result = sqrt(arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcbrt - returns cube root of arg1
|
|
*/
|
|
Datum
|
|
dcbrt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = cbrt(arg1);
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dpow - returns pow(arg1,arg2)
|
|
*/
|
|
Datum
|
|
dpow(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
/*
|
|
* The SQL spec requires that we emit a particular SQLSTATE error code for
|
|
* certain error conditions.
|
|
*/
|
|
if ((arg1 == 0 && arg2 < 0) ||
|
|
(arg1 < 0 && floor(arg2) != arg2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("invalid argument for power function")));
|
|
|
|
/*
|
|
* pow() sets errno only on some platforms, depending on whether it
|
|
* follows _IEEE_, _POSIX_, _XOPEN_, or _SVID_, so we try to avoid
|
|
* using errno. However, some platform/CPU combinations return
|
|
* errno == EDOM and result == Nan for negative arg1 and very large arg2
|
|
* (they must be using something different from our floor() test to
|
|
* decide it's invalid). Other platforms (HPPA) return errno == ERANGE
|
|
* and a large (HUGE_VAL) but finite result to signal overflow.
|
|
*/
|
|
errno = 0;
|
|
result = pow(arg1, arg2);
|
|
if (errno == EDOM && isnan(result))
|
|
{
|
|
if ((fabs(arg1) > 1 && arg2 >= 0) || (fabs(arg1) < 1 && arg2 < 0))
|
|
/* The sign of Inf is not significant in this case. */
|
|
result = get_float8_infinity();
|
|
else if (fabs(arg1) != 1)
|
|
result = 0;
|
|
else
|
|
result = 1;
|
|
}
|
|
else if (errno == ERANGE && result != 0 && !isinf(result))
|
|
result = get_float8_infinity();
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dexp - returns the exponential function of arg1
|
|
*/
|
|
Datum
|
|
dexp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = exp(arg1);
|
|
if (errno == ERANGE && result != 0 && !isinf(result))
|
|
result = get_float8_infinity();
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), false);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dlog1 - returns the natural logarithm of arg1
|
|
*/
|
|
Datum
|
|
dlog1(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* Emit particular SQLSTATE error codes for ln(). This is required by the
|
|
* SQL standard.
|
|
*/
|
|
if (arg1 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of zero")));
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of a negative number")));
|
|
|
|
result = log(arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 1);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dlog10 - returns the base 10 logarithm of arg1
|
|
*/
|
|
Datum
|
|
dlog10(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* Emit particular SQLSTATE error codes for log(). The SQL spec doesn't
|
|
* define log(), but it does define ln(), so it makes sense to emit the
|
|
* same error code for an analogous error condition.
|
|
*/
|
|
if (arg1 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of zero")));
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of a negative number")));
|
|
|
|
result = log10(arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 1);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dacos - returns the arccos of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dacos(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* We use errno here because the trigonometric functions are cyclic
|
|
* and hard to check for underflow.
|
|
*/
|
|
errno = 0;
|
|
result = acos(arg1);
|
|
if (errno != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dasin - returns the arcsin of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dasin(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = asin(arg1);
|
|
if (errno != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* datan - returns the arctan of arg1 (radians)
|
|
*/
|
|
Datum
|
|
datan(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = atan(arg1);
|
|
if (errno != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* atan2 - returns the arctan2 of arg1 (radians)
|
|
*/
|
|
Datum
|
|
datan2(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = atan2(arg1, arg2);
|
|
if (errno != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcos - returns the cosine of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dcos(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = cos(arg1);
|
|
if (errno != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcot - returns the cotangent of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dcot(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = tan(arg1);
|
|
if (errno != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = 1.0 / result;
|
|
CHECKFLOATVAL(result, true /* cotan(pi/2) == inf */, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsin - returns the sine of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dsin(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = sin(arg1);
|
|
if (errno != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtan - returns the tangent of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dtan(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = tan(arg1);
|
|
if (errno != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, true /* tan(pi/2) == Inf */, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* degrees - returns degrees converted from radians
|
|
*/
|
|
Datum
|
|
degrees(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = arg1 * (180.0 / M_PI);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dpi - returns the constant PI
|
|
*/
|
|
Datum
|
|
dpi(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(M_PI);
|
|
}
|
|
|
|
|
|
/*
|
|
* radians - returns radians converted from degrees
|
|
*/
|
|
Datum
|
|
radians(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = arg1 * (M_PI / 180.0);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* drandom - returns a random number
|
|
*/
|
|
Datum
|
|
drandom(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 result;
|
|
|
|
/* result [0.0 - 1.0) */
|
|
result = (double) random() / ((double) MAX_RANDOM_VALUE + 1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* setseed - set seed for the random number generator
|
|
*/
|
|
Datum
|
|
setseed(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 seed = PG_GETARG_FLOAT8(0);
|
|
int iseed = (int) (seed * MAX_RANDOM_VALUE);
|
|
|
|
srandom((unsigned int) iseed);
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* =========================
|
|
* FLOAT AGGREGATE OPERATORS
|
|
* =========================
|
|
*
|
|
* float8_accum - accumulate for AVG(), variance aggregates, etc.
|
|
* float4_accum - same, but input data is float4
|
|
* float8_avg - produce final result for float AVG()
|
|
* float8_var_samp - produce final result for float VAR_SAMP()
|
|
* float8_var_pop - produce final result for float VAR_POP()
|
|
* float8_stddev_samp - produce final result for float STDDEV_SAMP()
|
|
* float8_stddev_pop - produce final result for float STDDEV_POP()
|
|
*
|
|
* The transition datatype for all these aggregates is a 3-element array
|
|
* of float8, holding the values N, sum(X), sum(X*X) in that order.
|
|
*
|
|
* Note that we represent N as a float to avoid having to build a special
|
|
* datatype. Given a reasonable floating-point implementation, there should
|
|
* be no accuracy loss unless N exceeds 2 ^ 52 or so (by which time the
|
|
* user will have doubtless lost interest anyway...)
|
|
*/
|
|
|
|
static float8 *
|
|
check_float8_array(ArrayType *transarray, const char *caller, int n)
|
|
{
|
|
/*
|
|
* We expect the input to be an N-element float array; verify that. We
|
|
* don't need to use deconstruct_array() since the array data is just
|
|
* going to look like a C array of N float8 values.
|
|
*/
|
|
if (ARR_NDIM(transarray) != 1 ||
|
|
ARR_DIMS(transarray)[0] != n ||
|
|
ARR_HASNULL(transarray) ||
|
|
ARR_ELEMTYPE(transarray) != FLOAT8OID)
|
|
elog(ERROR, "%s: expected %d-element float8 array", caller, n);
|
|
return (float8 *) ARR_DATA_PTR(transarray);
|
|
}
|
|
|
|
Datum
|
|
float8_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 newval = PG_GETARG_FLOAT8(1);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_accum", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
N += 1.0;
|
|
sumX += newval;
|
|
CHECKFLOATVAL(sumX, isinf(transvalues[1]) || isinf(newval), true);
|
|
sumX2 += newval * newval;
|
|
CHECKFLOATVAL(sumX2, isinf(transvalues[2]) || isinf(newval), true);
|
|
|
|
/*
|
|
* If we're invoked by nodeAgg, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (fcinfo->context && IsA(fcinfo->context, AggState))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = sumX;
|
|
transvalues[2] = sumX2;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[3];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(sumX);
|
|
transdatums[2] = Float8GetDatumFast(sumX2);
|
|
|
|
result = construct_array(transdatums, 3,
|
|
FLOAT8OID,
|
|
sizeof(float8), false /* float8 byval */ , 'd');
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float4_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
/* do computations as float8 */
|
|
float8 newval = PG_GETARG_FLOAT4(1);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2;
|
|
|
|
transvalues = check_float8_array(transarray, "float4_accum", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
N += 1.0;
|
|
sumX += newval;
|
|
CHECKFLOATVAL(sumX, isinf(transvalues[1]) || isinf(newval), true);
|
|
sumX2 += newval * newval;
|
|
CHECKFLOATVAL(sumX2, isinf(transvalues[2]) || isinf(newval), true);
|
|
|
|
/*
|
|
* If we're invoked by nodeAgg, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (fcinfo->context && IsA(fcinfo->context, AggState))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = sumX;
|
|
transvalues[2] = sumX2;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[3];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(sumX);
|
|
transdatums[2] = Float8GetDatumFast(sumX2);
|
|
|
|
result = construct_array(transdatums, 3,
|
|
FLOAT8OID,
|
|
sizeof(float8), false /* float8 byval */ , 'd');
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8_avg(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_avg", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
/* ignore sumX2 */
|
|
|
|
/* SQL92 defines AVG of no values to be NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sumX / N);
|
|
}
|
|
|
|
Datum
|
|
float8_var_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_var_pop", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Population variance is undefined when N is 0, so return NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * N));
|
|
}
|
|
|
|
Datum
|
|
float8_var_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_var_samp", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Sample variance is undefined when N is 0 or 1, so return NULL */
|
|
if (N <= 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * (N - 1.0)));
|
|
}
|
|
|
|
Datum
|
|
float8_stddev_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_stddev_pop", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Population stddev is undefined when N is 0, so return NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(sqrt(numerator / (N * N)));
|
|
}
|
|
|
|
Datum
|
|
float8_stddev_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_stddev_samp", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Sample stddev is undefined when N is 0 or 1, so return NULL */
|
|
if (N <= 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(sqrt(numerator / (N * (N - 1.0))));
|
|
}
|
|
|
|
/*
|
|
* =========================
|
|
* SQL2003 BINARY AGGREGATES
|
|
* =========================
|
|
*
|
|
* The transition datatype for all these aggregates is a 6-element array of
|
|
* float8, holding the values N, sum(X), sum(X*X), sum(Y), sum(Y*Y), sum(X*Y)
|
|
* in that order. Note that Y is the first argument to the aggregates!
|
|
*
|
|
* It might seem attractive to optimize this by having multiple accumulator
|
|
* functions that only calculate the sums actually needed. But on most
|
|
* modern machines, a couple of extra floating-point multiplies will be
|
|
* insignificant compared to the other per-tuple overhead, so I've chosen
|
|
* to minimize code space instead.
|
|
*/
|
|
|
|
Datum
|
|
float8_regr_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 newvalY = PG_GETARG_FLOAT8(1);
|
|
float8 newvalX = PG_GETARG_FLOAT8(2);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumY2,
|
|
sumXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_accum", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
sumXY = transvalues[5];
|
|
|
|
N += 1.0;
|
|
sumX += newvalX;
|
|
CHECKFLOATVAL(sumX, isinf(transvalues[1]) || isinf(newvalX), true);
|
|
sumX2 += newvalX * newvalX;
|
|
CHECKFLOATVAL(sumX2, isinf(transvalues[2]) || isinf(newvalX), true);
|
|
sumY += newvalY;
|
|
CHECKFLOATVAL(sumY, isinf(transvalues[3]) || isinf(newvalY), true);
|
|
sumY2 += newvalY * newvalY;
|
|
CHECKFLOATVAL(sumY2, isinf(transvalues[4]) || isinf(newvalY), true);
|
|
sumXY += newvalX * newvalY;
|
|
CHECKFLOATVAL(sumXY, isinf(transvalues[5]) || isinf(newvalX) ||
|
|
isinf(newvalY), true);
|
|
|
|
/*
|
|
* If we're invoked by nodeAgg, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (fcinfo->context && IsA(fcinfo->context, AggState))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = sumX;
|
|
transvalues[2] = sumX2;
|
|
transvalues[3] = sumY;
|
|
transvalues[4] = sumY2;
|
|
transvalues[5] = sumXY;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[6];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(sumX);
|
|
transdatums[2] = Float8GetDatumFast(sumX2);
|
|
transdatums[3] = Float8GetDatumFast(sumY);
|
|
transdatums[4] = Float8GetDatumFast(sumY2);
|
|
transdatums[5] = Float8GetDatumFast(sumXY);
|
|
|
|
result = construct_array(transdatums, 6,
|
|
FLOAT8OID,
|
|
sizeof(float8),
|
|
false /* float8 byval */ , 'd');
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8_regr_sxx(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_sxx", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_syy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumY,
|
|
sumY2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_syy", 6);
|
|
N = transvalues[0];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumY2 - sumY * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumY2) || isinf(sumY), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_sxy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumY,
|
|
sumXY,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_sxy", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
|
|
/* A negative result is valid here */
|
|
|
|
PG_RETURN_FLOAT8(numerator / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_avgx(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_avgx", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sumX / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_avgy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_avgy", 6);
|
|
N = transvalues[0];
|
|
sumY = transvalues[3];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sumY / N);
|
|
}
|
|
|
|
Datum
|
|
float8_covar_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumY,
|
|
sumXY,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_covar_pop", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * N));
|
|
}
|
|
|
|
Datum
|
|
float8_covar_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumY,
|
|
sumXY,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_covar_samp", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is <= 1 we should return NULL */
|
|
if (N < 2.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * (N - 1.0)));
|
|
}
|
|
|
|
Datum
|
|
float8_corr(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumY2,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorY,
|
|
numeratorXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_corr", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorY = N * sumY2 - sumY * sumY;
|
|
CHECKFLOATVAL(numeratorY, isinf(sumY2) || isinf(sumY), true);
|
|
numeratorXY = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numeratorXY, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
if (numeratorX <= 0 || numeratorY <= 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sqrt((numeratorXY * numeratorXY) /
|
|
(numeratorX * numeratorY)));
|
|
}
|
|
|
|
Datum
|
|
float8_regr_r2(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumY2,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorY,
|
|
numeratorXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_r2", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorY = N * sumY2 - sumY * sumY;
|
|
CHECKFLOATVAL(numeratorY, isinf(sumY2) || isinf(sumY), true);
|
|
numeratorXY = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numeratorXY, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
if (numeratorX <= 0)
|
|
PG_RETURN_NULL();
|
|
/* per spec, horizontal line produces 1.0 */
|
|
if (numeratorY <= 0)
|
|
PG_RETURN_FLOAT8(1.0);
|
|
|
|
PG_RETURN_FLOAT8((numeratorXY * numeratorXY) /
|
|
(numeratorX * numeratorY));
|
|
}
|
|
|
|
Datum
|
|
float8_regr_slope(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_slope", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorXY = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numeratorXY, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
if (numeratorX <= 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(numeratorXY / numeratorX);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_intercept(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorXXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_intercept", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorXXY = sumY * sumX2 - sumX * sumXY;
|
|
CHECKFLOATVAL(numeratorXXY, isinf(sumY) || isinf(sumX2) ||
|
|
isinf(sumX) || isinf(sumXY), true);
|
|
if (numeratorX <= 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(numeratorXXY / numeratorX);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================================
|
|
* MIXED-PRECISION ARITHMETIC OPERATORS
|
|
* ====================================
|
|
*/
|
|
|
|
/*
|
|
* float48pl - returns arg1 + arg2
|
|
* float48mi - returns arg1 - arg2
|
|
* float48mul - returns arg1 * arg2
|
|
* float48div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float48pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 + arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float48mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 - arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float48mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 * arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float48div(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* float84pl - returns arg1 + arg2
|
|
* float84mi - returns arg1 - arg2
|
|
* float84mul - returns arg1 * arg2
|
|
* float84div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float84pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
result = arg1 + arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float84mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
result = arg1 - arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float84mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
result = arg1 * arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float84div(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* ====================
|
|
* COMPARISON OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float48{eq,ne,lt,le,gt,ge} - float4/float8 comparison operations
|
|
*/
|
|
Datum
|
|
float48eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float48ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float48lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float48le(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float48gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float48ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
/*
|
|
* float84{eq,ne,lt,le,gt,ge} - float8/float4 comparison operations
|
|
*/
|
|
Datum
|
|
float84eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float84ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float84lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float84le(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float84gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float84ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
/*
|
|
* Implements the float8 version of the width_bucket() function
|
|
* defined by SQL2003. See also width_bucket_numeric().
|
|
*
|
|
* 'bound1' and 'bound2' are the lower and upper bounds of the
|
|
* histogram's range, respectively. 'count' is the number of buckets
|
|
* in the histogram. width_bucket() returns an integer indicating the
|
|
* bucket number that 'operand' belongs to in an equiwidth histogram
|
|
* with the specified characteristics. An operand smaller than the
|
|
* lower bound is assigned to bucket 0. An operand greater than the
|
|
* upper bound is assigned to an additional bucket (with number
|
|
* count+1). We don't allow "NaN" for any of the float8 inputs, and we
|
|
* don't allow either of the histogram bounds to be +/- infinity.
|
|
*/
|
|
Datum
|
|
width_bucket_float8(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 operand = PG_GETARG_FLOAT8(0);
|
|
float8 bound1 = PG_GETARG_FLOAT8(1);
|
|
float8 bound2 = PG_GETARG_FLOAT8(2);
|
|
int32 count = PG_GETARG_INT32(3);
|
|
int32 result;
|
|
|
|
if (count <= 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("count must be greater than zero")));
|
|
|
|
if (isnan(operand) || isnan(bound1) || isnan(bound2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("operand, lower bound and upper bound cannot be NaN")));
|
|
|
|
/* Note that we allow "operand" to be infinite */
|
|
if (is_infinite(bound1) || is_infinite(bound2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("lower and upper bounds must be finite")));
|
|
|
|
if (bound1 < bound2)
|
|
{
|
|
if (operand < bound1)
|
|
result = 0;
|
|
else if (operand >= bound2)
|
|
{
|
|
result = count + 1;
|
|
/* check for overflow */
|
|
if (result < count)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
}
|
|
else
|
|
result = ((float8) count * (operand - bound1) / (bound2 - bound1)) + 1;
|
|
}
|
|
else if (bound1 > bound2)
|
|
{
|
|
if (operand > bound1)
|
|
result = 0;
|
|
else if (operand <= bound2)
|
|
{
|
|
result = count + 1;
|
|
/* check for overflow */
|
|
if (result < count)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
}
|
|
else
|
|
result = ((float8) count * (bound1 - operand) / (bound1 - bound2)) + 1;
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("lower bound cannot equal upper bound")));
|
|
result = 0; /* keep the compiler quiet */
|
|
}
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/* ========== PRIVATE ROUTINES ========== */
|
|
|
|
#ifndef HAVE_CBRT
|
|
|
|
static double
|
|
cbrt(double x)
|
|
{
|
|
int isneg = (x < 0.0);
|
|
double absx = fabs(x);
|
|
double tmpres = pow(absx, (double) 1.0 / (double) 3.0);
|
|
|
|
/*
|
|
* The result is somewhat inaccurate --- not really pow()'s fault, as the
|
|
* exponent it's handed contains roundoff error. We can improve the
|
|
* accuracy by doing one iteration of Newton's formula. Beware of zero
|
|
* input however.
|
|
*/
|
|
if (tmpres > 0.0)
|
|
tmpres -= (tmpres - absx / (tmpres * tmpres)) / (double) 3.0;
|
|
|
|
return isneg ? -tmpres : tmpres;
|
|
}
|
|
|
|
#endif /* !HAVE_CBRT */
|