mirror of
https://github.com/zebrajr/postgres.git
synced 2025-12-06 12:20:15 +01:00
To better record the internal behaviors of oauth-curl.c, add a unit test suite for the socket and timer handling code. This is all based on TAP and driven by our existing Test::More infrastructure. Reviewed-by: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org> Discussion: https://postgr.es/m/CAOYmi+nDZxJHaWj9_jRSyf8uMToCADAmOfJEggsKW-kY7aUwHA@mail.gmail.com
528 lines
14 KiB
C
528 lines
14 KiB
C
/*
|
|
* test-oauth-curl.c
|
|
*
|
|
* A unit test driver for libpq-oauth. This #includes oauth-curl.c, which lets
|
|
* the tests reference static functions and other internals.
|
|
*
|
|
* USE_ASSERT_CHECKING is required, to make it easy for tests to wrap
|
|
* must-succeed code as part of test setup.
|
|
*
|
|
* Copyright (c) 2025, PostgreSQL Global Development Group
|
|
*/
|
|
|
|
#include "oauth-curl.c"
|
|
|
|
#include <fcntl.h>
|
|
|
|
#ifdef USE_ASSERT_CHECKING
|
|
|
|
/*
|
|
* TAP Helpers
|
|
*/
|
|
|
|
static int num_tests = 0;
|
|
|
|
/*
|
|
* Reports ok/not ok to the TAP stream on stdout.
|
|
*/
|
|
#define ok(OK, TEST) \
|
|
ok_impl(OK, TEST, #OK, __FILE__, __LINE__)
|
|
|
|
static bool
|
|
ok_impl(bool ok, const char *test, const char *teststr, const char *file, int line)
|
|
{
|
|
printf("%sok %d - %s\n", ok ? "" : "not ", ++num_tests, test);
|
|
|
|
if (!ok)
|
|
{
|
|
printf("# at %s:%d:\n", file, line);
|
|
printf("# expression is false: %s\n", teststr);
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
/*
|
|
* Like ok(this == that), but with more diagnostics on failure.
|
|
*
|
|
* Only works on ints, but luckily that's all we need here. Note that the much
|
|
* simpler-looking macro implementation
|
|
*
|
|
* is_diag(ok(THIS == THAT, TEST), THIS, #THIS, THAT, #THAT)
|
|
*
|
|
* suffers from multiple evaluation of the macro arguments...
|
|
*/
|
|
#define is(THIS, THAT, TEST) \
|
|
do { \
|
|
int this_ = (THIS), \
|
|
that_ = (THAT); \
|
|
is_diag( \
|
|
ok_impl(this_ == that_, TEST, #THIS " == " #THAT, __FILE__, __LINE__), \
|
|
this_, #THIS, that_, #THAT \
|
|
); \
|
|
} while (0)
|
|
|
|
static bool
|
|
is_diag(bool ok, int this, const char *thisstr, int that, const char *thatstr)
|
|
{
|
|
if (!ok)
|
|
printf("# %s = %d; %s = %d\n", thisstr, this, thatstr, that);
|
|
|
|
return ok;
|
|
}
|
|
|
|
/*
|
|
* Utilities
|
|
*/
|
|
|
|
/*
|
|
* Creates a partially-initialized async_ctx for the purposes of testing. Free
|
|
* with free_test_actx().
|
|
*/
|
|
static struct async_ctx *
|
|
init_test_actx(void)
|
|
{
|
|
struct async_ctx *actx;
|
|
|
|
actx = calloc(1, sizeof(*actx));
|
|
Assert(actx);
|
|
|
|
actx->mux = PGINVALID_SOCKET;
|
|
actx->timerfd = -1;
|
|
actx->debugging = true;
|
|
|
|
initPQExpBuffer(&actx->errbuf);
|
|
|
|
Assert(setup_multiplexer(actx));
|
|
|
|
return actx;
|
|
}
|
|
|
|
static void
|
|
free_test_actx(struct async_ctx *actx)
|
|
{
|
|
termPQExpBuffer(&actx->errbuf);
|
|
|
|
if (actx->mux != PGINVALID_SOCKET)
|
|
close(actx->mux);
|
|
if (actx->timerfd >= 0)
|
|
close(actx->timerfd);
|
|
|
|
free(actx);
|
|
}
|
|
|
|
static char dummy_buf[4 * 1024]; /* for fill_pipe/drain_pipe */
|
|
|
|
/*
|
|
* Writes to the write side of a pipe until it won't take any more data. Returns
|
|
* the amount written.
|
|
*/
|
|
static ssize_t
|
|
fill_pipe(int fd)
|
|
{
|
|
int mode;
|
|
ssize_t written = 0;
|
|
|
|
/* Don't block. */
|
|
Assert((mode = fcntl(fd, F_GETFL)) != -1);
|
|
Assert(fcntl(fd, F_SETFL, mode | O_NONBLOCK) == 0);
|
|
|
|
while (true)
|
|
{
|
|
ssize_t w;
|
|
|
|
w = write(fd, dummy_buf, sizeof(dummy_buf));
|
|
if (w < 0)
|
|
{
|
|
if (errno != EAGAIN && errno != EWOULDBLOCK)
|
|
{
|
|
perror("write to pipe");
|
|
written = -1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
written += w;
|
|
}
|
|
|
|
/* Reset the descriptor flags. */
|
|
Assert(fcntl(fd, F_SETFD, mode) == 0);
|
|
|
|
return written;
|
|
}
|
|
|
|
/*
|
|
* Drains the requested amount of data from the read side of a pipe.
|
|
*/
|
|
static bool
|
|
drain_pipe(int fd, ssize_t n)
|
|
{
|
|
Assert(n > 0);
|
|
|
|
while (n)
|
|
{
|
|
size_t to_read = (n <= sizeof(dummy_buf)) ? n : sizeof(dummy_buf);
|
|
ssize_t drained;
|
|
|
|
drained = read(fd, dummy_buf, to_read);
|
|
if (drained < 0)
|
|
{
|
|
perror("read from pipe");
|
|
return false;
|
|
}
|
|
|
|
n -= drained;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Tests whether the multiplexer is marked ready by the deadline. This is a
|
|
* macro so that file/line information makes sense during failures.
|
|
*
|
|
* NB: our current multiplexer implementations (epoll/kqueue) are *readable*
|
|
* when the underlying libcurl sockets are *writable*. This behavior is pinned
|
|
* here to record that expectation; PGRES_POLLING_READING is hardcoded
|
|
* throughout the flow and would need to be changed if a new multiplexer does
|
|
* something different.
|
|
*/
|
|
#define mux_is_ready(MUX, DEADLINE, TEST) \
|
|
do { \
|
|
int res_ = PQsocketPoll(MUX, 1, 0, DEADLINE); \
|
|
Assert(res_ != -1); \
|
|
ok(res_ > 0, "multiplexer is ready " TEST); \
|
|
} while (0)
|
|
|
|
/*
|
|
* The opposite of mux_is_ready().
|
|
*/
|
|
#define mux_is_not_ready(MUX, TEST) \
|
|
do { \
|
|
int res_ = PQsocketPoll(MUX, 1, 0, 0); \
|
|
Assert(res_ != -1); \
|
|
is(res_, 0, "multiplexer is not ready " TEST); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Test Suites
|
|
*/
|
|
|
|
/* Per-suite timeout. Set via the PG_TEST_TIMEOUT_DEFAULT envvar. */
|
|
static pg_usec_time_t timeout_us = 180 * 1000 * 1000;
|
|
|
|
static void
|
|
test_set_timer(void)
|
|
{
|
|
struct async_ctx *actx = init_test_actx();
|
|
const pg_usec_time_t deadline = PQgetCurrentTimeUSec() + timeout_us;
|
|
|
|
printf("# test_set_timer\n");
|
|
|
|
/* A zero-duration timer should result in a near-immediate ready signal. */
|
|
Assert(set_timer(actx, 0));
|
|
mux_is_ready(actx->mux, deadline, "when timer expires");
|
|
is(timer_expired(actx), 1, "timer_expired() returns 1 when timer expires");
|
|
|
|
/* Resetting the timer far in the future should unset the ready signal. */
|
|
Assert(set_timer(actx, INT_MAX));
|
|
mux_is_not_ready(actx->mux, "when timer is reset to the future");
|
|
is(timer_expired(actx), 0, "timer_expired() returns 0 with unexpired timer");
|
|
|
|
/* Setting another zero-duration timer should override the previous one. */
|
|
Assert(set_timer(actx, 0));
|
|
mux_is_ready(actx->mux, deadline, "when timer is re-expired");
|
|
is(timer_expired(actx), 1, "timer_expired() returns 1 when timer is re-expired");
|
|
|
|
/* And disabling that timer should once again unset the ready signal. */
|
|
Assert(set_timer(actx, -1));
|
|
mux_is_not_ready(actx->mux, "when timer is unset");
|
|
is(timer_expired(actx), 0, "timer_expired() returns 0 when timer is unset");
|
|
|
|
{
|
|
bool expired;
|
|
|
|
/* Make sure drain_timer_events() functions correctly as well. */
|
|
Assert(set_timer(actx, 0));
|
|
mux_is_ready(actx->mux, deadline, "when timer is re-expired (drain_timer_events)");
|
|
|
|
Assert(drain_timer_events(actx, &expired));
|
|
mux_is_not_ready(actx->mux, "when timer is drained after expiring");
|
|
is(expired, 1, "drain_timer_events() reports expiration");
|
|
is(timer_expired(actx), 0, "timer_expired() returns 0 after timer is drained");
|
|
|
|
/* A second drain should do nothing. */
|
|
Assert(drain_timer_events(actx, &expired));
|
|
mux_is_not_ready(actx->mux, "when timer is drained a second time");
|
|
is(expired, 0, "drain_timer_events() reports no expiration");
|
|
is(timer_expired(actx), 0, "timer_expired() still returns 0");
|
|
}
|
|
|
|
free_test_actx(actx);
|
|
}
|
|
|
|
static void
|
|
test_register_socket(void)
|
|
{
|
|
struct async_ctx *actx = init_test_actx();
|
|
int pipefd[2];
|
|
int rfd,
|
|
wfd;
|
|
bool bidirectional;
|
|
|
|
/* Create a local pipe for communication. */
|
|
Assert(pipe(pipefd) == 0);
|
|
rfd = pipefd[0];
|
|
wfd = pipefd[1];
|
|
|
|
/*
|
|
* Some platforms (FreeBSD) implement bidirectional pipes, affecting the
|
|
* behavior of some of these tests. Store that knowledge for later.
|
|
*/
|
|
bidirectional = PQsocketPoll(rfd /* read */ , 0, 1 /* write */ , 0) > 0;
|
|
|
|
/*
|
|
* This suite runs twice -- once using CURL_POLL_IN/CURL_POLL_OUT for
|
|
* read/write operations, respectively, and once using CURL_POLL_INOUT for
|
|
* both sides.
|
|
*/
|
|
for (int inout = 0; inout < 2; inout++)
|
|
{
|
|
const int in_event = inout ? CURL_POLL_INOUT : CURL_POLL_IN;
|
|
const int out_event = inout ? CURL_POLL_INOUT : CURL_POLL_OUT;
|
|
const pg_usec_time_t deadline = PQgetCurrentTimeUSec() + timeout_us;
|
|
size_t bidi_pipe_size = 0; /* silence compiler warnings */
|
|
|
|
printf("# test_register_socket %s\n", inout ? "(INOUT)" : "");
|
|
|
|
/*
|
|
* At the start of the test, the read side should be blocked and the
|
|
* write side should be open. (There's a mistake at the end of this
|
|
* loop otherwise.)
|
|
*/
|
|
Assert(PQsocketPoll(rfd, 1, 0, 0) == 0);
|
|
Assert(PQsocketPoll(wfd, 0, 1, 0) > 0);
|
|
|
|
/*
|
|
* For bidirectional systems, emulate unidirectional behavior here by
|
|
* filling up the "read side" of the pipe.
|
|
*/
|
|
if (bidirectional)
|
|
Assert((bidi_pipe_size = fill_pipe(rfd)) > 0);
|
|
|
|
/* Listen on the read side. The multiplexer shouldn't be ready yet. */
|
|
Assert(register_socket(NULL, rfd, in_event, actx, NULL) == 0);
|
|
mux_is_not_ready(actx->mux, "when fd is not readable");
|
|
|
|
/* Writing to the pipe should result in a read-ready multiplexer. */
|
|
Assert(write(wfd, "x", 1) == 1);
|
|
mux_is_ready(actx->mux, deadline, "when fd is readable");
|
|
|
|
/*
|
|
* Update the registration to wait on write events instead. The
|
|
* multiplexer should be unset.
|
|
*/
|
|
Assert(register_socket(NULL, rfd, CURL_POLL_OUT, actx, NULL) == 0);
|
|
mux_is_not_ready(actx->mux, "when waiting for writes on readable fd");
|
|
|
|
/* Re-register for read events. */
|
|
Assert(register_socket(NULL, rfd, in_event, actx, NULL) == 0);
|
|
mux_is_ready(actx->mux, deadline, "when waiting for reads again");
|
|
|
|
/* Stop listening. The multiplexer should be unset. */
|
|
Assert(register_socket(NULL, rfd, CURL_POLL_REMOVE, actx, NULL) == 0);
|
|
mux_is_not_ready(actx->mux, "when readable fd is removed");
|
|
|
|
/* Listen again. */
|
|
Assert(register_socket(NULL, rfd, in_event, actx, NULL) == 0);
|
|
mux_is_ready(actx->mux, deadline, "when readable fd is re-added");
|
|
|
|
/*
|
|
* Draining the pipe should unset the multiplexer again, once the old
|
|
* event is cleared.
|
|
*/
|
|
Assert(drain_pipe(rfd, 1));
|
|
Assert(comb_multiplexer(actx));
|
|
mux_is_not_ready(actx->mux, "when fd is drained");
|
|
|
|
/* Undo any unidirectional emulation. */
|
|
if (bidirectional)
|
|
Assert(drain_pipe(wfd, bidi_pipe_size));
|
|
|
|
/* Listen on the write side. An empty buffer should be writable. */
|
|
Assert(register_socket(NULL, rfd, CURL_POLL_REMOVE, actx, NULL) == 0);
|
|
Assert(register_socket(NULL, wfd, out_event, actx, NULL) == 0);
|
|
mux_is_ready(actx->mux, deadline, "when fd is writable");
|
|
|
|
/* As above, wait on read events instead. */
|
|
Assert(register_socket(NULL, wfd, CURL_POLL_IN, actx, NULL) == 0);
|
|
mux_is_not_ready(actx->mux, "when waiting for reads on writable fd");
|
|
|
|
/* Re-register for write events. */
|
|
Assert(register_socket(NULL, wfd, out_event, actx, NULL) == 0);
|
|
mux_is_ready(actx->mux, deadline, "when waiting for writes again");
|
|
|
|
{
|
|
ssize_t written;
|
|
|
|
/*
|
|
* Fill the pipe. Once the old writable event is cleared, the mux
|
|
* should not be ready.
|
|
*/
|
|
Assert((written = fill_pipe(wfd)) > 0);
|
|
printf("# pipe buffer is full at %zd bytes\n", written);
|
|
|
|
Assert(comb_multiplexer(actx));
|
|
mux_is_not_ready(actx->mux, "when fd buffer is full");
|
|
|
|
/* Drain the pipe again. */
|
|
Assert(drain_pipe(rfd, written));
|
|
mux_is_ready(actx->mux, deadline, "when fd buffer is drained");
|
|
}
|
|
|
|
/* Stop listening. */
|
|
Assert(register_socket(NULL, wfd, CURL_POLL_REMOVE, actx, NULL) == 0);
|
|
mux_is_not_ready(actx->mux, "when fd is removed");
|
|
|
|
/* Make sure an expired timer doesn't interfere with event draining. */
|
|
{
|
|
bool expired;
|
|
|
|
/* Make the rfd appear unidirectional if necessary. */
|
|
if (bidirectional)
|
|
Assert((bidi_pipe_size = fill_pipe(rfd)) > 0);
|
|
|
|
/* Set the timer and wait for it to expire. */
|
|
Assert(set_timer(actx, 0));
|
|
Assert(PQsocketPoll(actx->timerfd, 1, 0, deadline) > 0);
|
|
is(timer_expired(actx), 1, "timer is expired");
|
|
|
|
/* Register for read events and make the fd readable. */
|
|
Assert(register_socket(NULL, rfd, in_event, actx, NULL) == 0);
|
|
Assert(write(wfd, "x", 1) == 1);
|
|
mux_is_ready(actx->mux, deadline, "when fd is readable and timer expired");
|
|
|
|
/*
|
|
* Draining the pipe should unset the multiplexer again, once the
|
|
* old event is drained and the timer is reset.
|
|
*
|
|
* Order matters, since comb_multiplexer() doesn't have to remove
|
|
* stale events when active events exist. Follow the call sequence
|
|
* used in the code: drain the timer expiration, drain the pipe,
|
|
* then clear the stale events.
|
|
*/
|
|
Assert(drain_timer_events(actx, &expired));
|
|
Assert(drain_pipe(rfd, 1));
|
|
Assert(comb_multiplexer(actx));
|
|
|
|
is(expired, 1, "drain_timer_events() reports expiration");
|
|
is(timer_expired(actx), 0, "timer is no longer expired");
|
|
mux_is_not_ready(actx->mux, "when fd is drained and timer reset");
|
|
|
|
/* Stop listening. */
|
|
Assert(register_socket(NULL, rfd, CURL_POLL_REMOVE, actx, NULL) == 0);
|
|
|
|
/* Undo any unidirectional emulation. */
|
|
if (bidirectional)
|
|
Assert(drain_pipe(wfd, bidi_pipe_size));
|
|
}
|
|
|
|
/* Ensure comb_multiplexer() can handle multiple stale events. */
|
|
{
|
|
int rfd2,
|
|
wfd2;
|
|
|
|
/* Create a second local pipe. */
|
|
Assert(pipe(pipefd) == 0);
|
|
rfd2 = pipefd[0];
|
|
wfd2 = pipefd[1];
|
|
|
|
/* Make both rfds appear unidirectional if necessary. */
|
|
if (bidirectional)
|
|
{
|
|
Assert((bidi_pipe_size = fill_pipe(rfd)) > 0);
|
|
Assert(fill_pipe(rfd2) == bidi_pipe_size);
|
|
}
|
|
|
|
/* Register for read events on both fds, and make them readable. */
|
|
Assert(register_socket(NULL, rfd, in_event, actx, NULL) == 0);
|
|
Assert(register_socket(NULL, rfd2, in_event, actx, NULL) == 0);
|
|
|
|
Assert(write(wfd, "x", 1) == 1);
|
|
Assert(write(wfd2, "x", 1) == 1);
|
|
|
|
mux_is_ready(actx->mux, deadline, "when two fds are readable");
|
|
|
|
/*
|
|
* Drain both fds. comb_multiplexer() should then ensure that the
|
|
* mux is no longer readable.
|
|
*/
|
|
Assert(drain_pipe(rfd, 1));
|
|
Assert(drain_pipe(rfd2, 1));
|
|
Assert(comb_multiplexer(actx));
|
|
mux_is_not_ready(actx->mux, "when two fds are drained");
|
|
|
|
/* Stop listening. */
|
|
Assert(register_socket(NULL, rfd, CURL_POLL_REMOVE, actx, NULL) == 0);
|
|
Assert(register_socket(NULL, rfd2, CURL_POLL_REMOVE, actx, NULL) == 0);
|
|
|
|
/* Undo any unidirectional emulation. */
|
|
if (bidirectional)
|
|
{
|
|
Assert(drain_pipe(wfd, bidi_pipe_size));
|
|
Assert(drain_pipe(wfd2, bidi_pipe_size));
|
|
}
|
|
|
|
close(rfd2);
|
|
close(wfd2);
|
|
}
|
|
}
|
|
|
|
close(rfd);
|
|
close(wfd);
|
|
free_test_actx(actx);
|
|
}
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
const char *timeout;
|
|
|
|
/* Grab the default timeout. */
|
|
timeout = getenv("PG_TEST_TIMEOUT_DEFAULT");
|
|
if (timeout)
|
|
{
|
|
int timeout_s = atoi(timeout);
|
|
|
|
if (timeout_s > 0)
|
|
timeout_us = timeout_s * 1000 * 1000;
|
|
}
|
|
|
|
/*
|
|
* Set up line buffering for our output, to let stderr interleave in the
|
|
* log files.
|
|
*/
|
|
setvbuf(stdout, NULL, PG_IOLBF, 0);
|
|
|
|
test_set_timer();
|
|
test_register_socket();
|
|
|
|
printf("1..%d\n", num_tests);
|
|
return 0;
|
|
}
|
|
|
|
#else /* !USE_ASSERT_CHECKING */
|
|
|
|
/*
|
|
* Skip the test suite when we don't have assertions.
|
|
*/
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
printf("1..0 # skip: cassert is not enabled\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* USE_ASSERT_CHECKING */
|