mirror of
https://github.com/zebrajr/postgres.git
synced 2025-12-07 12:20:31 +01:00
This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
1430 lines
29 KiB
C
1430 lines
29 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* int.c
|
|
* Functions for the built-in integer types (except int8).
|
|
*
|
|
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/int.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* OLD COMMENTS
|
|
* I/O routines:
|
|
* int2in, int2out, int2recv, int2send
|
|
* int4in, int4out, int4recv, int4send
|
|
* int2vectorin, int2vectorout, int2vectorrecv, int2vectorsend
|
|
* Boolean operators:
|
|
* inteq, intne, intlt, intle, intgt, intge
|
|
* Arithmetic operators:
|
|
* intpl, intmi, int4mul, intdiv
|
|
*
|
|
* Arithmetic operators:
|
|
* intmod
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "common/int.h"
|
|
#include "funcapi.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "utils/array.h"
|
|
#include "utils/builtins.h"
|
|
|
|
#define Int2VectorSize(n) (offsetof(int2vector, values) + (n) * sizeof(int16))
|
|
|
|
typedef struct
|
|
{
|
|
int32 current;
|
|
int32 finish;
|
|
int32 step;
|
|
} generate_series_fctx;
|
|
|
|
|
|
/*****************************************************************************
|
|
* USER I/O ROUTINES *
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* int2in - converts "num" to short
|
|
*/
|
|
Datum
|
|
int2in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
|
|
PG_RETURN_INT16(pg_atoi(num, sizeof(int16), '\0'));
|
|
}
|
|
|
|
/*
|
|
* int2out - converts short to "num"
|
|
*/
|
|
Datum
|
|
int2out(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
char *result = (char *) palloc(7); /* sign, 5 digits, '\0' */
|
|
|
|
pg_itoa(arg1, result);
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* int2recv - converts external binary format to int2
|
|
*/
|
|
Datum
|
|
int2recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_INT16((int16) pq_getmsgint(buf, sizeof(int16)));
|
|
}
|
|
|
|
/*
|
|
* int2send - converts int2 to binary format
|
|
*/
|
|
Datum
|
|
int2send(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendint16(&buf, arg1);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
/*
|
|
* construct int2vector given a raw array of int2s
|
|
*
|
|
* If int2s is NULL then caller must fill values[] afterward
|
|
*/
|
|
int2vector *
|
|
buildint2vector(const int16 *int2s, int n)
|
|
{
|
|
int2vector *result;
|
|
|
|
result = (int2vector *) palloc0(Int2VectorSize(n));
|
|
|
|
if (n > 0 && int2s)
|
|
memcpy(result->values, int2s, n * sizeof(int16));
|
|
|
|
/*
|
|
* Attach standard array header. For historical reasons, we set the index
|
|
* lower bound to 0 not 1.
|
|
*/
|
|
SET_VARSIZE(result, Int2VectorSize(n));
|
|
result->ndim = 1;
|
|
result->dataoffset = 0; /* never any nulls */
|
|
result->elemtype = INT2OID;
|
|
result->dim1 = n;
|
|
result->lbound1 = 0;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* int2vectorin - converts "num num ..." to internal form
|
|
*/
|
|
Datum
|
|
int2vectorin(PG_FUNCTION_ARGS)
|
|
{
|
|
char *intString = PG_GETARG_CSTRING(0);
|
|
int2vector *result;
|
|
int n;
|
|
|
|
result = (int2vector *) palloc0(Int2VectorSize(FUNC_MAX_ARGS));
|
|
|
|
for (n = 0; *intString && n < FUNC_MAX_ARGS; n++)
|
|
{
|
|
while (*intString && isspace((unsigned char) *intString))
|
|
intString++;
|
|
if (*intString == '\0')
|
|
break;
|
|
result->values[n] = pg_atoi(intString, sizeof(int16), ' ');
|
|
while (*intString && !isspace((unsigned char) *intString))
|
|
intString++;
|
|
}
|
|
while (*intString && isspace((unsigned char) *intString))
|
|
intString++;
|
|
if (*intString)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("int2vector has too many elements")));
|
|
|
|
SET_VARSIZE(result, Int2VectorSize(n));
|
|
result->ndim = 1;
|
|
result->dataoffset = 0; /* never any nulls */
|
|
result->elemtype = INT2OID;
|
|
result->dim1 = n;
|
|
result->lbound1 = 0;
|
|
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
|
|
/*
|
|
* int2vectorout - converts internal form to "num num ..."
|
|
*/
|
|
Datum
|
|
int2vectorout(PG_FUNCTION_ARGS)
|
|
{
|
|
int2vector *int2Array = (int2vector *) PG_GETARG_POINTER(0);
|
|
int num,
|
|
nnums = int2Array->dim1;
|
|
char *rp;
|
|
char *result;
|
|
|
|
/* assumes sign, 5 digits, ' ' */
|
|
rp = result = (char *) palloc(nnums * 7 + 1);
|
|
for (num = 0; num < nnums; num++)
|
|
{
|
|
if (num != 0)
|
|
*rp++ = ' ';
|
|
pg_itoa(int2Array->values[num], rp);
|
|
while (*++rp != '\0')
|
|
;
|
|
}
|
|
*rp = '\0';
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* int2vectorrecv - converts external binary format to int2vector
|
|
*/
|
|
Datum
|
|
int2vectorrecv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
FunctionCallInfoData locfcinfo;
|
|
int2vector *result;
|
|
|
|
/*
|
|
* Normally one would call array_recv() using DirectFunctionCall3, but
|
|
* that does not work since array_recv wants to cache some data using
|
|
* fcinfo->flinfo->fn_extra. So we need to pass it our own flinfo
|
|
* parameter.
|
|
*/
|
|
InitFunctionCallInfoData(locfcinfo, fcinfo->flinfo, 3,
|
|
InvalidOid, NULL, NULL);
|
|
|
|
locfcinfo.arg[0] = PointerGetDatum(buf);
|
|
locfcinfo.arg[1] = ObjectIdGetDatum(INT2OID);
|
|
locfcinfo.arg[2] = Int32GetDatum(-1);
|
|
locfcinfo.argnull[0] = false;
|
|
locfcinfo.argnull[1] = false;
|
|
locfcinfo.argnull[2] = false;
|
|
|
|
result = (int2vector *) DatumGetPointer(array_recv(&locfcinfo));
|
|
|
|
Assert(!locfcinfo.isnull);
|
|
|
|
/* sanity checks: int2vector must be 1-D, 0-based, no nulls */
|
|
if (ARR_NDIM(result) != 1 ||
|
|
ARR_HASNULL(result) ||
|
|
ARR_ELEMTYPE(result) != INT2OID ||
|
|
ARR_LBOUND(result)[0] != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid int2vector data")));
|
|
|
|
/* check length for consistency with int2vectorin() */
|
|
if (ARR_DIMS(result)[0] > FUNC_MAX_ARGS)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("oidvector has too many elements")));
|
|
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
|
|
/*
|
|
* int2vectorsend - converts int2vector to binary format
|
|
*/
|
|
Datum
|
|
int2vectorsend(PG_FUNCTION_ARGS)
|
|
{
|
|
return array_send(fcinfo);
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
* PUBLIC ROUTINES *
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* int4in - converts "num" to int4
|
|
*/
|
|
Datum
|
|
int4in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
|
|
PG_RETURN_INT32(pg_atoi(num, sizeof(int32), '\0'));
|
|
}
|
|
|
|
/*
|
|
* int4out - converts int4 to "num"
|
|
*/
|
|
Datum
|
|
int4out(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
char *result = (char *) palloc(12); /* sign, 10 digits, '\0' */
|
|
|
|
pg_ltoa(arg1, result);
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* int4recv - converts external binary format to int4
|
|
*/
|
|
Datum
|
|
int4recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_INT32((int32) pq_getmsgint(buf, sizeof(int32)));
|
|
}
|
|
|
|
/*
|
|
* int4send - converts int4 to binary format
|
|
*/
|
|
Datum
|
|
int4send(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendint32(&buf, arg1);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/*
|
|
* ===================
|
|
* CONVERSION ROUTINES
|
|
* ===================
|
|
*/
|
|
|
|
Datum
|
|
i2toi4(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_INT32((int32) arg1);
|
|
}
|
|
|
|
Datum
|
|
i4toi2(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
|
|
if (unlikely(arg1 < SHRT_MIN) || unlikely(arg1 > SHRT_MAX))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) arg1);
|
|
}
|
|
|
|
/* Cast int4 -> bool */
|
|
Datum
|
|
int4_bool(PG_FUNCTION_ARGS)
|
|
{
|
|
if (PG_GETARG_INT32(0) == 0)
|
|
PG_RETURN_BOOL(false);
|
|
else
|
|
PG_RETURN_BOOL(true);
|
|
}
|
|
|
|
/* Cast bool -> int4 */
|
|
Datum
|
|
bool_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
if (PG_GETARG_BOOL(0) == false)
|
|
PG_RETURN_INT32(0);
|
|
else
|
|
PG_RETURN_INT32(1);
|
|
}
|
|
|
|
/*
|
|
* ============================
|
|
* COMPARISON OPERATOR ROUTINES
|
|
* ============================
|
|
*/
|
|
|
|
/*
|
|
* inteq - returns 1 iff arg1 == arg2
|
|
* intne - returns 1 iff arg1 != arg2
|
|
* intlt - returns 1 iff arg1 < arg2
|
|
* intle - returns 1 iff arg1 <= arg2
|
|
* intgt - returns 1 iff arg1 > arg2
|
|
* intge - returns 1 iff arg1 >= arg2
|
|
*/
|
|
|
|
Datum
|
|
int4eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 == arg2);
|
|
}
|
|
|
|
Datum
|
|
int4ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 != arg2);
|
|
}
|
|
|
|
Datum
|
|
int4lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 < arg2);
|
|
}
|
|
|
|
Datum
|
|
int4le(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 <= arg2);
|
|
}
|
|
|
|
Datum
|
|
int4gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 > arg2);
|
|
}
|
|
|
|
Datum
|
|
int4ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 >= arg2);
|
|
}
|
|
|
|
Datum
|
|
int2eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 == arg2);
|
|
}
|
|
|
|
Datum
|
|
int2ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 != arg2);
|
|
}
|
|
|
|
Datum
|
|
int2lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 < arg2);
|
|
}
|
|
|
|
Datum
|
|
int2le(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 <= arg2);
|
|
}
|
|
|
|
Datum
|
|
int2gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 > arg2);
|
|
}
|
|
|
|
Datum
|
|
int2ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 >= arg2);
|
|
}
|
|
|
|
Datum
|
|
int24eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 == arg2);
|
|
}
|
|
|
|
Datum
|
|
int24ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 != arg2);
|
|
}
|
|
|
|
Datum
|
|
int24lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 < arg2);
|
|
}
|
|
|
|
Datum
|
|
int24le(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 <= arg2);
|
|
}
|
|
|
|
Datum
|
|
int24gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 > arg2);
|
|
}
|
|
|
|
Datum
|
|
int24ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(arg1 >= arg2);
|
|
}
|
|
|
|
Datum
|
|
int42eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 == arg2);
|
|
}
|
|
|
|
Datum
|
|
int42ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 != arg2);
|
|
}
|
|
|
|
Datum
|
|
int42lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 < arg2);
|
|
}
|
|
|
|
Datum
|
|
int42le(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 <= arg2);
|
|
}
|
|
|
|
Datum
|
|
int42gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 > arg2);
|
|
}
|
|
|
|
Datum
|
|
int42ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(arg1 >= arg2);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* in_range functions for int4 and int2,
|
|
* including cross-data-type comparisons.
|
|
*
|
|
* Note: we provide separate intN_int8 functions for performance
|
|
* reasons. This forces also providing intN_int2, else cases with a
|
|
* smallint offset value would fail to resolve which function to use.
|
|
* But that's an unlikely situation, so don't duplicate code for it.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
in_range_int4_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val = PG_GETARG_INT32(0);
|
|
int32 base = PG_GETARG_INT32(1);
|
|
int32 offset = PG_GETARG_INT32(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
int32 sum;
|
|
|
|
if (offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
if (sub)
|
|
offset = -offset; /* cannot overflow */
|
|
|
|
if (unlikely(pg_add_s32_overflow(base, offset, &sum)))
|
|
{
|
|
/*
|
|
* If sub is false, the true sum is surely more than val, so correct
|
|
* answer is the same as "less". If sub is true, the true sum is
|
|
* surely less than val, so the answer is "!less".
|
|
*/
|
|
PG_RETURN_BOOL(sub ? !less : less);
|
|
}
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
Datum
|
|
in_range_int4_int2(PG_FUNCTION_ARGS)
|
|
{
|
|
/* Doesn't seem worth duplicating code for, so just invoke int4_int4 */
|
|
return DirectFunctionCall5(in_range_int4_int4,
|
|
PG_GETARG_DATUM(0),
|
|
PG_GETARG_DATUM(1),
|
|
Int32GetDatum((int32) PG_GETARG_INT16(2)),
|
|
PG_GETARG_DATUM(3),
|
|
PG_GETARG_DATUM(4));
|
|
}
|
|
|
|
Datum
|
|
in_range_int4_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
/* We must do all the math in int64 */
|
|
int64 val = (int64) PG_GETARG_INT32(0);
|
|
int64 base = (int64) PG_GETARG_INT32(1);
|
|
int64 offset = PG_GETARG_INT64(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
int64 sum;
|
|
|
|
if (offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
if (sub)
|
|
offset = -offset; /* cannot overflow */
|
|
|
|
if (unlikely(pg_add_s64_overflow(base, offset, &sum)))
|
|
{
|
|
/*
|
|
* If sub is false, the true sum is surely more than val, so correct
|
|
* answer is the same as "less". If sub is true, the true sum is
|
|
* surely less than val, so the answer is "!less".
|
|
*/
|
|
PG_RETURN_BOOL(sub ? !less : less);
|
|
}
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
Datum
|
|
in_range_int2_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
/* We must do all the math in int32 */
|
|
int32 val = (int32) PG_GETARG_INT16(0);
|
|
int32 base = (int32) PG_GETARG_INT16(1);
|
|
int32 offset = PG_GETARG_INT32(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
int32 sum;
|
|
|
|
if (offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
if (sub)
|
|
offset = -offset; /* cannot overflow */
|
|
|
|
if (unlikely(pg_add_s32_overflow(base, offset, &sum)))
|
|
{
|
|
/*
|
|
* If sub is false, the true sum is surely more than val, so correct
|
|
* answer is the same as "less". If sub is true, the true sum is
|
|
* surely less than val, so the answer is "!less".
|
|
*/
|
|
PG_RETURN_BOOL(sub ? !less : less);
|
|
}
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
Datum
|
|
in_range_int2_int2(PG_FUNCTION_ARGS)
|
|
{
|
|
/* Doesn't seem worth duplicating code for, so just invoke int2_int4 */
|
|
return DirectFunctionCall5(in_range_int2_int4,
|
|
PG_GETARG_DATUM(0),
|
|
PG_GETARG_DATUM(1),
|
|
Int32GetDatum((int32) PG_GETARG_INT16(2)),
|
|
PG_GETARG_DATUM(3),
|
|
PG_GETARG_DATUM(4));
|
|
}
|
|
|
|
Datum
|
|
in_range_int2_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
/* Doesn't seem worth duplicating code for, so just invoke int4_int8 */
|
|
return DirectFunctionCall5(in_range_int4_int8,
|
|
Int32GetDatum((int32) PG_GETARG_INT16(0)),
|
|
Int32GetDatum((int32) PG_GETARG_INT16(1)),
|
|
PG_GETARG_DATUM(2),
|
|
PG_GETARG_DATUM(3),
|
|
PG_GETARG_DATUM(4));
|
|
}
|
|
|
|
|
|
/*
|
|
* int[24]pl - returns arg1 + arg2
|
|
* int[24]mi - returns arg1 - arg2
|
|
* int[24]mul - returns arg1 * arg2
|
|
* int[24]div - returns arg1 / arg2
|
|
*/
|
|
|
|
Datum
|
|
int4um(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg = PG_GETARG_INT32(0);
|
|
|
|
if (unlikely(arg == PG_INT32_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(-arg);
|
|
}
|
|
|
|
Datum
|
|
int4up(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_INT32(arg);
|
|
}
|
|
|
|
Datum
|
|
int4pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_add_s32_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_sub_s32_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_mul_s32_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4div(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (arg2 == 0)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT_MIN / -1 is problematic, since the result can't be represented on a
|
|
* two's-complement machine. Some machines produce INT_MIN, some produce
|
|
* zero, some throw an exception. We can dodge the problem by recognizing
|
|
* that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT32_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4inc(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg = PG_GETARG_INT32(0);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_add_s32_overflow(arg, 1, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int2um(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg = PG_GETARG_INT16(0);
|
|
|
|
if (unlikely(arg == PG_INT16_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
PG_RETURN_INT16(-arg);
|
|
}
|
|
|
|
Datum
|
|
int2up(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_INT16(arg);
|
|
}
|
|
|
|
Datum
|
|
int2pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int16 result;
|
|
|
|
if (unlikely(pg_add_s16_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
Datum
|
|
int2mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int16 result;
|
|
|
|
if (unlikely(pg_sub_s16_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
Datum
|
|
int2mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int16 result;
|
|
|
|
if (unlikely(pg_mul_s16_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
Datum
|
|
int2div(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int16 result;
|
|
|
|
if (arg2 == 0)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* SHRT_MIN / -1 is problematic, since the result can't be represented on
|
|
* a two's-complement machine. Some machines produce SHRT_MIN, some
|
|
* produce zero, some throw an exception. We can dodge the problem by
|
|
* recognizing that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT16_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
Datum
|
|
int24pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_add_s32_overflow((int32) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int24mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_sub_s32_overflow((int32) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int24mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_mul_s32_overflow((int32) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int24div(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
PG_RETURN_INT32((int32) arg1 / arg2);
|
|
}
|
|
|
|
Datum
|
|
int42pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_add_s32_overflow(arg1, (int32) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int42mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_sub_s32_overflow(arg1, (int32) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int42mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int32 result;
|
|
|
|
if (unlikely(pg_mul_s32_overflow(arg1, (int32) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int42div(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int32 result;
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT_MIN / -1 is problematic, since the result can't be represented on a
|
|
* two's-complement machine. Some machines produce INT_MIN, some produce
|
|
* zero, some throw an exception. We can dodge the problem by recognizing
|
|
* that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT32_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int4mod(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* Some machines throw a floating-point exception for INT_MIN % -1, which
|
|
* is a bit silly since the correct answer is perfectly well-defined,
|
|
* namely zero.
|
|
*/
|
|
if (arg2 == -1)
|
|
PG_RETURN_INT32(0);
|
|
|
|
/* No overflow is possible */
|
|
|
|
PG_RETURN_INT32(arg1 % arg2);
|
|
}
|
|
|
|
Datum
|
|
int2mod(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* Some machines throw a floating-point exception for INT_MIN % -1, which
|
|
* is a bit silly since the correct answer is perfectly well-defined,
|
|
* namely zero. (It's not clear this ever happens when dealing with
|
|
* int16, but we might as well have the test for safety.)
|
|
*/
|
|
if (arg2 == -1)
|
|
PG_RETURN_INT16(0);
|
|
|
|
/* No overflow is possible */
|
|
|
|
PG_RETURN_INT16(arg1 % arg2);
|
|
}
|
|
|
|
|
|
/* int[24]abs()
|
|
* Absolute value
|
|
*/
|
|
Datum
|
|
int4abs(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 result;
|
|
|
|
if (unlikely(arg1 == PG_INT32_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
result = (arg1 < 0) ? -arg1 : arg1;
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
Datum
|
|
int2abs(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 result;
|
|
|
|
if (unlikely(arg1 == PG_INT16_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
result = (arg1 < 0) ? -arg1 : arg1;
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
Datum
|
|
int2larger(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16((arg1 > arg2) ? arg1 : arg2);
|
|
}
|
|
|
|
Datum
|
|
int2smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16((arg1 < arg2) ? arg1 : arg2);
|
|
}
|
|
|
|
Datum
|
|
int4larger(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32((arg1 > arg2) ? arg1 : arg2);
|
|
}
|
|
|
|
Datum
|
|
int4smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32((arg1 < arg2) ? arg1 : arg2);
|
|
}
|
|
|
|
/*
|
|
* Bit-pushing operators
|
|
*
|
|
* int[24]and - returns arg1 & arg2
|
|
* int[24]or - returns arg1 | arg2
|
|
* int[24]xor - returns arg1 # arg2
|
|
* int[24]not - returns ~arg1
|
|
* int[24]shl - returns arg1 << arg2
|
|
* int[24]shr - returns arg1 >> arg2
|
|
*/
|
|
|
|
Datum
|
|
int4and(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 & arg2);
|
|
}
|
|
|
|
Datum
|
|
int4or(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 | arg2);
|
|
}
|
|
|
|
Datum
|
|
int4xor(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 ^ arg2);
|
|
}
|
|
|
|
Datum
|
|
int4shl(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 << arg2);
|
|
}
|
|
|
|
Datum
|
|
int4shr(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT32(arg1 >> arg2);
|
|
}
|
|
|
|
Datum
|
|
int4not(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_INT32(~arg1);
|
|
}
|
|
|
|
Datum
|
|
int2and(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16(arg1 & arg2);
|
|
}
|
|
|
|
Datum
|
|
int2or(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16(arg1 | arg2);
|
|
}
|
|
|
|
Datum
|
|
int2xor(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT16(arg1 ^ arg2);
|
|
}
|
|
|
|
Datum
|
|
int2not(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_INT16(~arg1);
|
|
}
|
|
|
|
|
|
Datum
|
|
int2shl(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT16(arg1 << arg2);
|
|
}
|
|
|
|
Datum
|
|
int2shr(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT16(arg1 >> arg2);
|
|
}
|
|
|
|
/*
|
|
* non-persistent numeric series generator
|
|
*/
|
|
Datum
|
|
generate_series_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
return generate_series_step_int4(fcinfo);
|
|
}
|
|
|
|
Datum
|
|
generate_series_step_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
FuncCallContext *funcctx;
|
|
generate_series_fctx *fctx;
|
|
int32 result;
|
|
MemoryContext oldcontext;
|
|
|
|
/* stuff done only on the first call of the function */
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
int32 start = PG_GETARG_INT32(0);
|
|
int32 finish = PG_GETARG_INT32(1);
|
|
int32 step = 1;
|
|
|
|
/* see if we were given an explicit step size */
|
|
if (PG_NARGS() == 3)
|
|
step = PG_GETARG_INT32(2);
|
|
if (step == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("step size cannot equal zero")));
|
|
|
|
/* create a function context for cross-call persistence */
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/*
|
|
* switch to memory context appropriate for multiple function calls
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/* allocate memory for user context */
|
|
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
|
|
|
|
/*
|
|
* Use fctx to keep state from call to call. Seed current with the
|
|
* original start value
|
|
*/
|
|
fctx->current = start;
|
|
fctx->finish = finish;
|
|
fctx->step = step;
|
|
|
|
funcctx->user_fctx = fctx;
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* stuff done on every call of the function */
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
|
|
/*
|
|
* get the saved state and use current as the result for this iteration
|
|
*/
|
|
fctx = funcctx->user_fctx;
|
|
result = fctx->current;
|
|
|
|
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
|
|
(fctx->step < 0 && fctx->current >= fctx->finish))
|
|
{
|
|
/*
|
|
* Increment current in preparation for next iteration. If next-value
|
|
* computation overflows, this is the final result.
|
|
*/
|
|
if (pg_add_s32_overflow(fctx->current, fctx->step, &fctx->current))
|
|
fctx->step = 0;
|
|
|
|
/* do when there is more left to send */
|
|
SRF_RETURN_NEXT(funcctx, Int32GetDatum(result));
|
|
}
|
|
else
|
|
/* do when there is no more left */
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|