Since 19252e8ec9 we reject Python 2 during build configuration. Now that the
dust on the buildfarm has settled, remove regression testing infrastructure
dealing with differing output between Python 2 / 3.
Reviewed-By: Peter Eisentraut <peter@eisentraut.org>
Reviewed-By: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/20211031184548.g4sxfe47n2kyi55r@alap3.anarazel.de
Change the exception syntax used in the tests to use the more current
except Exception as ex:
rather than the old
except Exception, ex:
Since support for Python <2.6 has been removed, all supported versions
now support the new style, and we can save one step in the Python 3
compatibility conversion.
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://www.postgresql.org/message-id/flat/98b69261-298c-13d2-f34d-836fd9c29b21%402ndquadrant.com
Instead of
plan = plpy.prepare(...)
res = plpy.execute(plan, ...)
you can now write
plan = plpy.prepare(...)
res = plan.execute(...)
or even
res = plpy.prepare(...).execute(...)
and similarly for the cursor() method.
This is more in object oriented style, and makes the hybrid nature of
the existing execute() function less confusing.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Similar to 0137caf273, this makes contrib and pl tests less dependant on
hash-table order. After this commit, at least some order affecting
changes to execGrouping.c don't result in regression test changes
anymore.
PL/Python failed if a PL/Python function was invoked recursively via SPI,
since arguments are passed to the function in its global dictionary
(a horrible decision that's far too ancient to undo) and it would delete
those dictionary entries on function exit, leaving the outer recursion
level(s) without any arguments. Not deleting them would be little better,
since the outer levels would then see the innermost level's arguments.
Since PL/Python uses ValuePerCall mode for evaluating set-returning
functions, it's possible for multiple executions of the same SRF to be
interleaved within a query. PL/Python failed in such a case, because
it stored only one iterator per function, directly in the function's
PLyProcedure struct. Moreover, one interleaved instance of the SRF
would see argument values that should belong to another.
Hence, invent code for saving and restoring the argument entries. To fix
the recursion case, we only need to save at recursive entry and restore
at recursive exit, so the overhead in non-recursive cases is negligible.
To fix the SRF case, we have to save when suspending a SRF and restore
when resuming it, which is potentially not negligible; but fortunately
this is mostly a matter of manipulating Python object refcounts and
should not involve much physical data copying.
Also, store the Python iterator and saved argument values in a structure
associated with the SRF call site rather than the function itself. This
requires adding a memory context deletion callback to ensure that the SRF
state is cleaned up if the calling query exits before running the SRF to
completion. Without that we'd leak a refcount to the iterator object in
such a case, resulting in session-lifespan memory leakage. (In the
pre-existing code, there was no memory leak because there was only one
iterator pointer, but what would happen is that the previous iterator
would be resumed by the next query attempting to use the SRF. Hardly the
semantics we want.)
We can buy back some of whatever overhead we've added by getting rid of
PLy_function_delete_args(), which seems a useless activity: there is no
need to delete argument entries from the global dictionary on exit,
since the next time anyone would see the global dict is on the next
fresh call of the PL/Python function, at which time we'd overwrite those
entries with new arg values anyway.
Also clean up some really ugly coding in the SRF implementation, including
such gems as returning directly out of a PG_TRY block. (The only reason
that failed to crash hard was that all existing call sites immediately
exited their own PG_TRY blocks, popping the dangling longjmp pointer before
there was any chance of it being used.)
In principle this is a bug fix; but it seems a bit too invasive relative to
its value for a back-patch, and besides the fix depends on memory context
callbacks so it could not go back further than 9.5 anyway.
Alexey Grishchenko and Tom Lane
Allow PL/Python functions to return arrays of composite types.
Also, fix the restriction that plpy.prepare/plpy.execute couldn't
handle query parameters or result columns of composite types.
In passing, adopt a saner arrangement for where to release the
tupledesc reference counts acquired via lookup_rowtype_tupdesc.
The callers of PLyObject_ToCompositeDatum were doing the lookups,
but then the releases happened somewhere down inside subroutines
of PLyObject_ToCompositeDatum, which is bizarre and bug-prone.
Instead release in the same function that acquires the refcount.
Ed Behn and Ronan Dunklau, reviewed by Abhijit Menon-Sen
Similar to 2cfb1c6f77, the order in which
dictionary elements are printed is not reliable. This reappeared in the
tests of the string representation of result objects. Reduce the test
case to one result set column so that there is no question of order.
The old way of implementing slicing support by implementing
PySequenceMethods.sq_slice no longer works in Python 3. You now have
to implement PyMappingMethods.mp_subscript. Do this by simply
proxying the call to the wrapped list of result dictionaries.
Consolidate some of the subscripting regression tests.
Jan Urbański
Add test cases for inline handler of plython2u (when using that
language name), and for result object element assignment. There is
now at least one test case for every top-level functionality, except
plpy.Fatal (annoying to use in regression tests) and result object
slice retrieval and slice assignment (which are somewhat broken).
The result object methods colnames() etc. would crash when called
after a command that did not produce a result set. Now they throw an
exception.
discovery and initial patch by Jean-Baptiste Quenot
Add result object functions .colnames, .coltypes, .coltypmods to
obtain information about the result column names and types, which was
previously not possible in the PL/Python SPI interface.
reviewed by Abhijit Menon-Sen
Add a function plpy.cursor that is similar to plpy.execute but uses an
SPI cursor to avoid fetching the entire result set into memory.
Jan Urbański, reviewed by Steve Singer
Switch the implementation of the plan and result types to generic attribute
management, as described at <http://docs.python.org/extending/newtypes.html>.
This modernizes and simplifies the code a bit and prepares for Python 3.1,
where the old way doesn't work anymore.
This changes a bunch of incidentially used constructs in the PL/Python
regression tests to equivalent constructs in cases where Python 3 no longer
supports the old syntax. Support for older Python versions is unchanged.
of the previous monolithic setup-create-run sequence, that was apparently
inherited from a previous test infrastructure, but makes working with the
tests and adding new ones weird.