mirror of
https://github.com/zebrajr/opencv.git
synced 2025-12-06 12:19:50 +01:00
136 lines
4.5 KiB
C++
136 lines
4.5 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "../precomp.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../op_cuda.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
#include "../op_webnn.hpp"
|
|
|
|
#ifdef HAVE_OPENCL
|
|
#include "opencl_kernels_dnn.hpp"
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/const.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
class ConstLayerImpl CV_FINAL : public ConstLayer
|
|
{
|
|
public:
|
|
ConstLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
CV_Assert(blobs.size() == 1);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
return true;
|
|
#endif
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_WEBNN ||
|
|
backendId == DNN_BACKEND_CUDA;
|
|
}
|
|
|
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.empty());
|
|
outputs.assign(1, shape(blobs[0]));
|
|
return false;
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
std::vector<UMat> outputs;
|
|
outs.getUMatVector(outputs);
|
|
if (outs.depth() == CV_16S)
|
|
convertFp16(blobs[0], outputs[0]);
|
|
else
|
|
blobs[0].copyTo(outputs[0]);
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
std::vector<Mat> outputs;
|
|
outputs_arr.getMatVector(outputs);
|
|
blobs[0].copyTo(outputs[0]);
|
|
}
|
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
auto node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
|
getShape<size_t>(blobs[0]),
|
|
blobs[0].data);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(node));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
#ifdef HAVE_WEBNN
|
|
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
ml::Operand operand = nullptr;
|
|
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
|
|
auto& webnnGraphBuilder = node->net->builder;
|
|
operand = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(blobs[0]), blobs[0].data, blobs[0].total()*blobs[0].elemSize(), ml::OperandType::Float32);
|
|
return Ptr<BackendNode>(new WebnnBackendNode(operand));
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
|
|
CV_Assert(blobs.size() == 1);
|
|
return make_cuda_node<cuda4dnn::ConstOp>(preferableTarget, std::move(context->stream), blobs[0]);
|
|
}
|
|
#endif
|
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
|
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
|
|
{
|
|
Mat quantizedBlob;
|
|
blobs[0].convertTo(quantizedBlob, CV_8S, 1.f/scales[1][0], zeropoints[1][0]);
|
|
params.blobs.clear();
|
|
params.blobs.push_back(quantizedBlob);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
Ptr<Layer> ConstLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<Layer>(new ConstLayerImpl(params));
|
|
}
|
|
|
|
}} // namespace cv::dnn
|