mirror of
https://github.com/zebrajr/opencv.git
synced 2025-12-06 00:19:46 +01:00
456 lines
14 KiB
C++
456 lines
14 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test {
|
|
namespace {
|
|
|
|
class CV_ECC_BaseTest : public cvtest::BaseTest {
|
|
public:
|
|
CV_ECC_BaseTest();
|
|
virtual ~CV_ECC_BaseTest();
|
|
|
|
protected:
|
|
double computeRMS(const Mat& mat1, const Mat& mat2);
|
|
bool isMapCorrect(const Mat& mat);
|
|
|
|
virtual bool test(const Mat) { return true; }; // single test
|
|
bool testAllTypes(const Mat img); // run test for all supported data types (U8, U16, F32, F64)
|
|
bool testAllChNum(const Mat img); // run test for all supported channels count (gray, RGB)
|
|
|
|
void run(int);
|
|
|
|
bool checkMap(const Mat& map, const Mat& ground);
|
|
|
|
double MAX_RMS_ECC; // upper bound for RMS error
|
|
int ntests; // number of tests per motion type
|
|
int ECC_iterations; // number of iterations for ECC
|
|
double ECC_epsilon; // we choose a negative value, so that
|
|
// ECC_iterations are always executed
|
|
TermCriteria criteria;
|
|
};
|
|
|
|
CV_ECC_BaseTest::CV_ECC_BaseTest() {
|
|
MAX_RMS_ECC = 0.1;
|
|
ntests = 3;
|
|
ECC_iterations = 50;
|
|
ECC_epsilon = -1; //-> negative value means that ECC_Iterations will be executed
|
|
criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, ECC_iterations, ECC_epsilon);
|
|
}
|
|
|
|
CV_ECC_BaseTest::~CV_ECC_BaseTest() {}
|
|
|
|
bool CV_ECC_BaseTest::isMapCorrect(const Mat& map) {
|
|
bool tr = true;
|
|
float mapVal;
|
|
for (int i = 0; i < map.rows; i++)
|
|
for (int j = 0; j < map.cols; j++) {
|
|
mapVal = map.at<float>(i, j);
|
|
tr = tr & (!cvIsNaN(mapVal) && (fabs(mapVal) < 1e9));
|
|
}
|
|
|
|
return tr;
|
|
}
|
|
|
|
double CV_ECC_BaseTest::computeRMS(const Mat& mat1, const Mat& mat2) {
|
|
CV_Assert(mat1.rows == mat2.rows);
|
|
CV_Assert(mat1.cols == mat2.cols);
|
|
|
|
Mat errorMat;
|
|
subtract(mat1, mat2, errorMat);
|
|
|
|
return sqrt(errorMat.dot(errorMat) / (mat1.rows * mat1.cols * mat1.channels()));
|
|
}
|
|
|
|
bool CV_ECC_BaseTest::checkMap(const Mat& map, const Mat& ground) {
|
|
if (!isMapCorrect(map)) {
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
|
return false;
|
|
}
|
|
|
|
if (computeRMS(map, ground) > MAX_RMS_ECC) {
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
|
ts->printf(ts->LOG, "RMS = %f", computeRMS(map, ground));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CV_ECC_BaseTest::testAllTypes(const Mat img) {
|
|
auto types = {CV_8U, CV_16U, CV_32F, CV_64F};
|
|
for (auto type : types) {
|
|
Mat timg;
|
|
img.convertTo(timg, type);
|
|
if (!test(timg))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CV_ECC_BaseTest::testAllChNum(const Mat img) {
|
|
if (!testAllTypes(img))
|
|
return false;
|
|
|
|
Mat gray;
|
|
cvtColor(img, gray, COLOR_RGB2GRAY);
|
|
if (!testAllTypes(gray))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void CV_ECC_BaseTest::run(int) {
|
|
Mat img = imread(string(ts->get_data_path()) + "shared/fruits.png");
|
|
if (img.empty()) {
|
|
ts->printf(ts->LOG, "test image can not be read");
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
return;
|
|
}
|
|
|
|
Mat testImg;
|
|
resize(img, testImg, Size(216, 216), 0, 0, INTER_LINEAR_EXACT);
|
|
|
|
testAllChNum(testImg);
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
}
|
|
|
|
class CV_ECC_Test_Translation : public CV_ECC_BaseTest {
|
|
public:
|
|
CV_ECC_Test_Translation();
|
|
|
|
protected:
|
|
bool test(const Mat);
|
|
};
|
|
|
|
CV_ECC_Test_Translation::CV_ECC_Test_Translation() {}
|
|
|
|
bool CV_ECC_Test_Translation::test(const Mat testImg) {
|
|
cv::RNG rng = ts->get_rng();
|
|
|
|
int progress = 0;
|
|
|
|
for (int k = 0; k < ntests; k++) {
|
|
ts->update_context(this, k, true);
|
|
progress = update_progress(progress, k, ntests, 0);
|
|
|
|
Mat translationGround = (Mat_<float>(2, 3) << 1, 0, (rng.uniform(10.f, 20.f)), 0, 1, (rng.uniform(10.f, 20.f)));
|
|
|
|
Mat warpedImage;
|
|
|
|
warpAffine(testImg, warpedImage, translationGround, Size(200, 200), INTER_LINEAR + WARP_INVERSE_MAP);
|
|
|
|
Mat mapTranslation = (Mat_<float>(2, 3) << 1, 0, 0, 0, 1, 0);
|
|
|
|
findTransformECC(warpedImage, testImg, mapTranslation, 0, criteria);
|
|
|
|
if (!checkMap(mapTranslation, translationGround))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class CV_ECC_Test_Euclidean : public CV_ECC_BaseTest {
|
|
public:
|
|
CV_ECC_Test_Euclidean();
|
|
|
|
protected:
|
|
bool test(const Mat);
|
|
};
|
|
|
|
CV_ECC_Test_Euclidean::CV_ECC_Test_Euclidean() {}
|
|
|
|
bool CV_ECC_Test_Euclidean::test(const Mat testImg) {
|
|
cv::RNG rng = ts->get_rng();
|
|
|
|
int progress = 0;
|
|
for (int k = 0; k < ntests; k++) {
|
|
ts->update_context(this, k, true);
|
|
progress = update_progress(progress, k, ntests, 0);
|
|
|
|
double angle = CV_PI / 30 + CV_PI * rng.uniform((double)-2.f, (double)2.f) / 180;
|
|
|
|
Mat euclideanGround = (Mat_<float>(2, 3) << cos(angle), -sin(angle), (rng.uniform(10.f, 20.f)), sin(angle),
|
|
cos(angle), (rng.uniform(10.f, 20.f)));
|
|
|
|
Mat warpedImage;
|
|
|
|
warpAffine(testImg, warpedImage, euclideanGround, Size(200, 200), INTER_LINEAR + WARP_INVERSE_MAP);
|
|
|
|
Mat mapEuclidean = (Mat_<float>(2, 3) << 1, 0, 0, 0, 1, 0);
|
|
|
|
findTransformECC(warpedImage, testImg, mapEuclidean, 1, criteria);
|
|
|
|
if (!checkMap(mapEuclidean, euclideanGround))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class CV_ECC_Test_Affine : public CV_ECC_BaseTest {
|
|
public:
|
|
CV_ECC_Test_Affine();
|
|
|
|
protected:
|
|
bool test(const Mat img);
|
|
};
|
|
|
|
CV_ECC_Test_Affine::CV_ECC_Test_Affine() {}
|
|
|
|
bool CV_ECC_Test_Affine::test(const Mat testImg) {
|
|
cv::RNG rng = ts->get_rng();
|
|
|
|
int progress = 0;
|
|
for (int k = 0; k < ntests; k++) {
|
|
ts->update_context(this, k, true);
|
|
progress = update_progress(progress, k, ntests, 0);
|
|
|
|
Mat affineGround = (Mat_<float>(2, 3) << (1 - rng.uniform(-0.05f, 0.05f)), (rng.uniform(-0.03f, 0.03f)),
|
|
(rng.uniform(10.f, 20.f)), (rng.uniform(-0.03f, 0.03f)), (1 - rng.uniform(-0.05f, 0.05f)),
|
|
(rng.uniform(10.f, 20.f)));
|
|
|
|
Mat warpedImage;
|
|
|
|
warpAffine(testImg, warpedImage, affineGround, Size(200, 200), INTER_LINEAR + WARP_INVERSE_MAP);
|
|
|
|
Mat mapAffine = (Mat_<float>(2, 3) << 1, 0, 0, 0, 1, 0);
|
|
|
|
findTransformECC(warpedImage, testImg, mapAffine, 2, criteria);
|
|
|
|
if (!checkMap(mapAffine, affineGround))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
class CV_ECC_Test_Homography : public CV_ECC_BaseTest {
|
|
public:
|
|
CV_ECC_Test_Homography();
|
|
|
|
protected:
|
|
bool test(const Mat testImg);
|
|
};
|
|
|
|
CV_ECC_Test_Homography::CV_ECC_Test_Homography() {}
|
|
|
|
bool CV_ECC_Test_Homography::test(const Mat testImg) {
|
|
cv::RNG rng = ts->get_rng();
|
|
|
|
int progress = 0;
|
|
for (int k = 0; k < ntests; k++) {
|
|
ts->update_context(this, k, true);
|
|
progress = update_progress(progress, k, ntests, 0);
|
|
|
|
Mat homoGround =
|
|
(Mat_<float>(3, 3) << (1 - rng.uniform(-0.05f, 0.05f)), (rng.uniform(-0.03f, 0.03f)),
|
|
(rng.uniform(10.f, 20.f)), (rng.uniform(-0.03f, 0.03f)), (1 - rng.uniform(-0.05f, 0.05f)),
|
|
(rng.uniform(10.f, 20.f)), (rng.uniform(0.0001f, 0.0003f)), (rng.uniform(0.0001f, 0.0003f)), 1.f);
|
|
|
|
Mat warpedImage;
|
|
|
|
warpPerspective(testImg, warpedImage, homoGround, Size(200, 200), INTER_LINEAR + WARP_INVERSE_MAP);
|
|
|
|
Mat mapHomography = Mat::eye(3, 3, CV_32F);
|
|
|
|
findTransformECC(warpedImage, testImg, mapHomography, 3, criteria);
|
|
|
|
if (!checkMap(mapHomography, homoGround))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class CV_ECC_Test_Mask : public CV_ECC_BaseTest {
|
|
public:
|
|
CV_ECC_Test_Mask();
|
|
|
|
protected:
|
|
bool test(const Mat);
|
|
};
|
|
|
|
CV_ECC_Test_Mask::CV_ECC_Test_Mask() {}
|
|
|
|
bool CV_ECC_Test_Mask::test(const Mat testImg) {
|
|
cv::RNG rng = ts->get_rng();
|
|
|
|
int progress = 0;
|
|
|
|
for (int k = 0; k < ntests; k++) {
|
|
ts->update_context(this, k, true);
|
|
progress = update_progress(progress, k, ntests, 0);
|
|
|
|
Mat translationGround = (Mat_<float>(2, 3) << 1, 0, (rng.uniform(10.f, 20.f)), 0, 1, (rng.uniform(10.f, 20.f)));
|
|
|
|
Mat warpedImage;
|
|
|
|
warpAffine(testImg, warpedImage, translationGround, Size(200, 200), INTER_LINEAR + WARP_INVERSE_MAP);
|
|
|
|
Mat mapTranslation = (Mat_<float>(2, 3) << 1, 0, 0, 0, 1, 0);
|
|
|
|
Mat_<unsigned char> mask = Mat_<unsigned char>::ones(testImg.rows, testImg.cols);
|
|
Rect region(testImg.cols * 2 / 3, testImg.rows * 2 / 3, testImg.cols / 3, testImg.rows / 3);
|
|
|
|
rectangle(testImg, region, Scalar::all(0), FILLED);
|
|
rectangle(mask, region, Scalar(0), FILLED);
|
|
|
|
findTransformECC(warpedImage, testImg, mapTranslation, 0, criteria, mask);
|
|
|
|
if (!checkMap(mapTranslation, translationGround))
|
|
return false;
|
|
|
|
// Test with non-default gaussian blur.
|
|
findTransformECC(warpedImage, testImg, mapTranslation, 0, criteria, mask, 1);
|
|
|
|
if (!checkMap(mapTranslation, translationGround))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void testECCProperties(Mat x, float eps) {
|
|
// The channels are independent
|
|
Mat y = x.t();
|
|
Mat Z = Mat::zeros(x.size(), y.type());
|
|
Mat O = Mat::ones(x.size(), y.type());
|
|
|
|
EXPECT_NEAR(computeECC(x, y), 0.0, eps);
|
|
if (x.type() != CV_8U && x.type() != CV_8U) {
|
|
EXPECT_NEAR(computeECC(x + y, x - y), 0.0, eps);
|
|
}
|
|
|
|
EXPECT_NEAR(computeECC(x, x), 1.0, eps);
|
|
|
|
Mat R, G, B, X, Y;
|
|
cv::merge(std::vector<cv::Mat>({O, Z, Z}), R);
|
|
cv::merge(std::vector<cv::Mat>({Z, O, Z}), G);
|
|
cv::merge(std::vector<cv::Mat>({Z, Z, O}), B);
|
|
cv::merge(std::vector<cv::Mat>({x, x, x}), X);
|
|
cv::merge(std::vector<cv::Mat>({y, y, y}), Y);
|
|
|
|
// 1. The channels are orthogonal and independent
|
|
EXPECT_NEAR(computeECC(X.mul(R), X.mul(G)), 0, eps);
|
|
EXPECT_NEAR(computeECC(X.mul(R), X.mul(B)), 0, eps);
|
|
EXPECT_NEAR(computeECC(X.mul(B), X.mul(G)), 0, eps);
|
|
|
|
EXPECT_NEAR(computeECC(X.mul(R) + Y.mul(B), X.mul(B) + Y.mul(R)), 0, eps);
|
|
|
|
EXPECT_NEAR(computeECC(X.mul(R) + Y.mul(G) + (X + Y).mul(B), Y.mul(R) + X.mul(G) + (X - Y).mul(B)), 0, eps);
|
|
|
|
// 2. Each channel contribute equally
|
|
EXPECT_NEAR(computeECC(X.mul(R) + Y.mul(G + B), X), 1.0 / 3, eps);
|
|
EXPECT_NEAR(computeECC(X.mul(G) + Y.mul(R + B), X), 1.0 / 3, eps);
|
|
EXPECT_NEAR(computeECC(X.mul(B) + Y.mul(G + R), X), 1.0 / 3, eps);
|
|
|
|
// 3. The coefficient is invariant with respect to the offset of channels
|
|
EXPECT_NEAR(computeECC(X - R + 2 * G + B, X), 1.0, eps);
|
|
if (x.type() != CV_8U && x.type() != CV_8U) {
|
|
EXPECT_NEAR(computeECC(X + R - 2 * G + B, Y), 0.0, eps);
|
|
}
|
|
|
|
// The channels are independent. Check orthogonal combinations
|
|
// full squares norm = sum of squared norms
|
|
EXPECT_NEAR(computeECC(X, Y + X), 1.0 / sqrt(2.0), eps);
|
|
EXPECT_NEAR(computeECC(X, 2 * Y + X), 1.0 / sqrt(5.0), eps);
|
|
}
|
|
|
|
TEST(Video_ECC_Test_Compute, properies) {
|
|
Mat xline(1, 100, CV_32F), x;
|
|
for (int i = 0; i < xline.cols; ++i) xline.at<float>(0, i) = (float)i;
|
|
|
|
repeat(xline, xline.cols, 1, x);
|
|
|
|
Mat x_f64, x_u8, x_u16;
|
|
x.convertTo(x_f64, CV_64F);
|
|
x.convertTo(x_u8, CV_8U);
|
|
x.convertTo(x_u16, CV_16U);
|
|
|
|
testECCProperties(x, 1e-5f);
|
|
testECCProperties(x_f64, 1e-5f);
|
|
testECCProperties(x_u8, 1);
|
|
testECCProperties(x_u16, 1);
|
|
}
|
|
|
|
TEST(Video_ECC_Test_Compute, accuracy) {
|
|
Mat testImg = (Mat_<float>(3, 3) << 1, 0, 0, 1, 0, 0, 1, 0, 0);
|
|
Mat warpedImage = (Mat_<float>(3, 3) << 0, 1, 0, 0, 1, 0, 0, 1, 0);
|
|
Mat_<unsigned char> mask = Mat_<unsigned char>::ones(testImg.rows, testImg.cols);
|
|
double ecc = computeECC(warpedImage, testImg, mask);
|
|
|
|
EXPECT_NEAR(ecc, -0.5f, 1e-5f);
|
|
}
|
|
|
|
TEST(Video_ECC_Test_Compute, bug_14657) {
|
|
/*
|
|
* Simple test case - a 2 x 2 matrix with 10, 10, 10, 6. When the mean (36 / 4 = 9) is subtracted,
|
|
* it results in 1, 1, 1, 0 for the unsigned int case - compare to 1, 1, 1, -3 in the signed case.
|
|
* For this reason, when the same matrix was provided as the input and the template, we didn't get 1 as expected.
|
|
*/
|
|
Mat img = (Mat_<uint8_t>(2, 2) << 10, 10, 10, 6);
|
|
EXPECT_NEAR(computeECC(img, img), 1.0f, 1e-5f);
|
|
}
|
|
|
|
TEST(Video_ECC_Translation, accuracy) {
|
|
CV_ECC_Test_Translation test;
|
|
test.safe_run();
|
|
}
|
|
TEST(Video_ECC_Euclidean, accuracy) {
|
|
CV_ECC_Test_Euclidean test;
|
|
test.safe_run();
|
|
}
|
|
TEST(Video_ECC_Affine, accuracy) {
|
|
CV_ECC_Test_Affine test;
|
|
test.safe_run();
|
|
}
|
|
TEST(Video_ECC_Homography, accuracy) {
|
|
CV_ECC_Test_Homography test;
|
|
test.safe_run();
|
|
}
|
|
TEST(Video_ECC_Mask, accuracy) {
|
|
CV_ECC_Test_Mask test;
|
|
test.safe_run();
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace opencv_test
|