''' Showcases the use of background subtraction from a live video feed, aswell as pass through of a known foreground parameter ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv def main(): cap = cv.VideoCapture(0) if not cap.isOpened: print("Capture source avaialable.") exit() # Create background subtractor mog2_bg_subtractor = cv.createBackgroundSubtractorMOG2(history=300, varThreshold=50, detectShadows=False) knn_bg_subtractor = cv.createBackgroundSubtractorKNN(history=300, detectShadows=False) frame_count = 0 # Allows for a frame buffer for the mask to learn pre known foreground show_count = 10 while True: ret, frame = cap.read() if not ret: break x = 100 + (frame_count % 10) * 3 frame = cv.resize(frame, (640, 480)) aKnownForegroundMask = np.zeros(frame.shape[:2], dtype=np.uint8) # Allow for models to "settle"/learn if frame_count > show_count: cv.rectangle(aKnownForegroundMask, (x,200), (x+50,300), 255, -1) cv.rectangle(aKnownForegroundMask, (540,180), (640,480), 255, -1) #MOG2 Subtraction mog2_with_mask = mog2_bg_subtractor.apply(frame,knownForegroundMask=aKnownForegroundMask) mog2_without_mask = mog2_bg_subtractor.apply(frame) #KNN Subtraction knn_with_mask = knn_bg_subtractor.apply(frame,knownForegroundMask=aKnownForegroundMask) knn_without_mask = knn_bg_subtractor.apply(frame) # Display the 3 parameter apply and the 4 parameter apply for both subtractors cv.imshow("MOG2 With a Foreground Mask", mog2_with_mask) cv.imshow("MOG2 Without a Foreground Mask", mog2_without_mask) cv.imshow("KNN With a Foreground Mask", knn_with_mask) cv.imshow("KNN Without a Foreground Mask", knn_without_mask) key = cv.waitKey(30) if key == 27: # ESC break frame_count += 1 cap.release() cv.destroyAllWindows() if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()