mirror of
https://github.com/zebrajr/opencv.git
synced 2025-12-06 12:19:50 +01:00
Merge pull request #26002 from nishanthdass:doc/missing-fields-python-tutorials
Remove empty Additional Resources and Exercises fields from tutorials #26002 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake This PR is in response to issue [26001](https://github.com/opencv/opencv/issues/26001) This pull request addresses the issue of empty "Additional Resources" and "Exercises" fields in several OpenCV-Python tutorials. The empty sections have been removed to improve the clarity and consistency of the documentation.
This commit is contained in:
parent
c9df679943
commit
6cd730a02c
|
|
@ -216,8 +216,6 @@ for i in range(len(objpoints)):
|
||||||
|
|
||||||
print( "total error: {}".format(mean_error/len(objpoints)) )
|
print( "total error: {}".format(mean_error/len(objpoints)) )
|
||||||
@endcode
|
@endcode
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
|
||||||
|
|
@ -158,9 +158,6 @@ side. That meeting point is the epipole.
|
||||||
|
|
||||||
For better results, images with good resolution and many non-planar points should be used.
|
For better results, images with good resolution and many non-planar points should be used.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -119,9 +119,3 @@ And look at the result below:
|
||||||
|
|
||||||
If you are interested in graphics, augmented reality etc, you can use OpenGL to render more
|
If you are interested in graphics, augmented reality etc, you can use OpenGL to render more
|
||||||
complicated figures.
|
complicated figures.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -195,9 +195,3 @@ See the result below. (Image is displayed with matplotlib. So RED and BLUE chann
|
||||||
interchanged):
|
interchanged):
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -110,9 +110,6 @@ img2_fg.
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -163,6 +163,3 @@ Additional Resources
|
||||||
2. Scipy Lecture Notes - [Advanced
|
2. Scipy Lecture Notes - [Advanced
|
||||||
Numpy](http://scipy-lectures.github.io/advanced/advanced_numpy/index.html#advanced-numpy)
|
Numpy](http://scipy-lectures.github.io/advanced/advanced_numpy/index.html#advanced-numpy)
|
||||||
3. [Timing and Profiling in IPython](http://pynash.org/2013/03/06/timing-and-profiling/)
|
3. [Timing and Profiling in IPython](http://pynash.org/2013/03/06/timing-and-profiling/)
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -138,6 +138,3 @@ Additional Resources
|
||||||
2. Edward Rosten, Reid Porter, and Tom Drummond, "Faster and better: a machine learning approach to
|
2. Edward Rosten, Reid Porter, and Tom Drummond, "Faster and better: a machine learning approach to
|
||||||
corner detection" in IEEE Trans. Pattern Analysis and Machine Intelligence, 2010, vol 32, pp.
|
corner detection" in IEEE Trans. Pattern Analysis and Machine Intelligence, 2010, vol 32, pp.
|
||||||
105-119.
|
105-119.
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -102,9 +102,3 @@ plt.imshow(img3, 'gray'),plt.show()
|
||||||
See the result below. Object is marked in white color in cluttered image:
|
See the result below. Object is marked in white color in cluttered image:
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -81,9 +81,3 @@ or do whatever you want.
|
||||||
|
|
||||||
So in this module, we are looking to different algorithms in OpenCV to find features, describe them,
|
So in this module, we are looking to different algorithms in OpenCV to find features, describe them,
|
||||||
match them etc.
|
match them etc.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -209,9 +209,3 @@ plt.imshow(img3,),plt.show()
|
||||||
See the result below:
|
See the result below:
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -93,6 +93,3 @@ Additional Resources
|
||||||
|
|
||||||
-# Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary R. Bradski: ORB: An efficient alternative to
|
-# Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary R. Bradski: ORB: An efficient alternative to
|
||||||
SIFT or SURF. ICCV 2011: 2564-2571.
|
SIFT or SURF. ICCV 2011: 2564-2571.
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -67,9 +67,3 @@ See the result below:
|
||||||

|

|
||||||
|
|
||||||
This function is more appropriate for tracking. We will see that when its time comes.
|
This function is more appropriate for tracking. We will see that when its time comes.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -160,9 +160,3 @@ Here kp will be a list of keypoints and des is a numpy array of shape
|
||||||
|
|
||||||
So we got keypoints, descriptors etc. Now we want to see how to match keypoints in different images.
|
So we got keypoints, descriptors etc. Now we want to see how to match keypoints in different images.
|
||||||
That we will learn in coming chapters.
|
That we will learn in coming chapters.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -155,9 +155,3 @@ Finally we check the descriptor size and change it to 128 if it is only 64-dim.
|
||||||
(47, 128)
|
(47, 128)
|
||||||
@endcode
|
@endcode
|
||||||
Remaining part is matching which we will do in another chapter.
|
Remaining part is matching which we will do in another chapter.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -101,8 +101,6 @@ while(1):
|
||||||
|
|
||||||
cv.destroyAllWindows()
|
cv.destroyAllWindows()
|
||||||
@endcode
|
@endcode
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
|
||||||
|
|
@ -152,9 +152,3 @@ cap.release()
|
||||||
out.release()
|
out.release()
|
||||||
cv.destroyAllWindows()
|
cv.destroyAllWindows()
|
||||||
@endcode
|
@endcode
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -103,9 +103,6 @@ Now you take [H-10, 100,100] and [H+10, 255, 255] as the lower bound and upper b
|
||||||
from this method, you can use any image editing tools like GIMP or any online converters to find
|
from this method, you can use any image editing tools like GIMP or any online converters to find
|
||||||
these values, but don't forget to adjust the HSV ranges.
|
these values, but don't forget to adjust the HSV ranges.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -199,9 +199,3 @@ righty = int(((cols-x)*vy/vx)+y)
|
||||||
cv.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)
|
cv.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)
|
||||||
@endcode
|
@endcode
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -114,9 +114,6 @@ For eg, if I apply it to an Indian map, I get the following result :
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -88,9 +88,3 @@ the contour array (drawn in blue color). First image shows points I got with cv.
|
||||||
much memory it saves!!!
|
much memory it saves!!!
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -212,9 +212,3 @@ array([[[ 7, -1, 1, -1],
|
||||||
[ 8, 0, -1, -1],
|
[ 8, 0, -1, -1],
|
||||||
[-1, 7, -1, -1]]])
|
[-1, 7, -1, -1]]])
|
||||||
@endcode
|
@endcode
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -124,9 +124,6 @@ See, even image rotation doesn't affect much on this comparison.
|
||||||
moments invariant to translation, rotation and scale. Seventh one is skew-invariant. Those values
|
moments invariant to translation, rotation and scale. Seventh one is skew-invariant. Those values
|
||||||
can be found using **cv.HuMoments()** function.
|
can be found using **cv.HuMoments()** function.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
====================
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -150,6 +150,3 @@ Additional Resources
|
||||||
--------------------
|
--------------------
|
||||||
|
|
||||||
-# Details about the [bilateral filtering](http://people.csail.mit.edu/sparis/bf_course/)
|
-# Details about the [bilateral filtering](http://people.csail.mit.edu/sparis/bf_course/)
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -163,6 +163,3 @@ Additional Resources
|
||||||
--------------------
|
--------------------
|
||||||
|
|
||||||
-# "Computer Vision: Algorithms and Applications", Richard Szeliski
|
-# "Computer Vision: Algorithms and Applications", Richard Szeliski
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -146,9 +146,6 @@ mark the rectangle area in mask image with 2-pixel or 3-pixel (probable backgrou
|
||||||
mark our sure_foreground with 1-pixel as we did in second example. Then directly apply the grabCut
|
mark our sure_foreground with 1-pixel as we did in second example. Then directly apply the grabCut
|
||||||
function with mask mode.
|
function with mask mode.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -103,9 +103,3 @@ plt.show()
|
||||||
Check the result below:
|
Check the result below:
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -125,9 +125,3 @@ output of that code for the same image as above:
|
||||||
|
|
||||||
You can clearly see in the histogram what colors are present, blue is there, yellow is there, and
|
You can clearly see in the histogram what colors are present, blue is there, yellow is there, and
|
||||||
some white due to chessboard is there. Nice !!!
|
some white due to chessboard is there. Nice !!!
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -123,6 +123,3 @@ Additional Resources
|
||||||
|
|
||||||
-# "Indexing via color histograms", Swain, Michael J. , Third international conference on computer
|
-# "Indexing via color histograms", Swain, Michael J. , Third international conference on computer
|
||||||
vision,1990.
|
vision,1990.
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -197,6 +197,3 @@ Additional Resources
|
||||||
--------------------
|
--------------------
|
||||||
|
|
||||||
-# [Cambridge in Color website](http://www.cambridgeincolour.com/tutorials/histograms1.htm)
|
-# [Cambridge in Color website](http://www.cambridgeincolour.com/tutorials/histograms1.htm)
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -151,6 +151,3 @@ Also check these SOF questions regarding contrast adjustment:
|
||||||
C?](http://stackoverflow.com/questions/10549245/how-can-i-adjust-contrast-in-opencv-in-c)
|
C?](http://stackoverflow.com/questions/10549245/how-can-i-adjust-contrast-in-opencv-in-c)
|
||||||
4. [How do I equalize contrast & brightness of images using
|
4. [How do I equalize contrast & brightness of images using
|
||||||
opencv?](http://stackoverflow.com/questions/10561222/how-do-i-equalize-contrast-brightness-of-images-using-opencv)
|
opencv?](http://stackoverflow.com/questions/10561222/how-do-i-equalize-contrast-brightness-of-images-using-opencv)
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -45,9 +45,3 @@ cv.destroyAllWindows()
|
||||||
Result is shown below:
|
Result is shown below:
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -103,6 +103,3 @@ Additional Resources
|
||||||
--------------------
|
--------------------
|
||||||
|
|
||||||
-# [Hough Transform on Wikipedia](http://en.wikipedia.org/wiki/Hough_transform)
|
-# [Hough Transform on Wikipedia](http://en.wikipedia.org/wiki/Hough_transform)
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -152,6 +152,3 @@ Additional Resources
|
||||||
--------------------
|
--------------------
|
||||||
|
|
||||||
-# [Morphological Operations](http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm) at HIPR2
|
-# [Morphological Operations](http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm) at HIPR2
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -139,6 +139,3 @@ Additional Resources
|
||||||
--------------------
|
--------------------
|
||||||
|
|
||||||
-# [Image Blending](http://pages.cs.wisc.edu/~csverma/CS766_09/ImageMosaic/imagemosaic.html)
|
-# [Image Blending](http://pages.cs.wisc.edu/~csverma/CS766_09/ImageMosaic/imagemosaic.html)
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -132,9 +132,3 @@ cv.imwrite('res.png',img_rgb)
|
||||||
Result:
|
Result:
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -291,6 +291,3 @@ Additional Resources
|
||||||
Theory](http://cns-alumni.bu.edu/~slehar/fourier/fourier.html) by Steven Lehar
|
Theory](http://cns-alumni.bu.edu/~slehar/fourier/fourier.html) by Steven Lehar
|
||||||
2. [Fourier Transform](http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm) at HIPR
|
2. [Fourier Transform](http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm) at HIPR
|
||||||
3. [What does frequency domain denote in case of images?](http://dsp.stackexchange.com/q/1637/818)
|
3. [What does frequency domain denote in case of images?](http://dsp.stackexchange.com/q/1637/818)
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -186,9 +186,3 @@ cv.destroyAllWindows()
|
||||||
See the result below for K=8:
|
See the result below for K=8:
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -80,6 +80,3 @@ Additional Resources
|
||||||
|
|
||||||
-# [Machine Learning Course](https://www.coursera.org/course/ml), Video lectures by Prof. Andrew Ng
|
-# [Machine Learning Course](https://www.coursera.org/course/ml), Video lectures by Prof. Andrew Ng
|
||||||
(Some of the images are taken from this)
|
(Some of the images are taken from this)
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -130,5 +130,3 @@ Additional Resources
|
||||||
|
|
||||||
-# [NPTEL notes on Statistical Pattern Recognition, Chapters
|
-# [NPTEL notes on Statistical Pattern Recognition, Chapters
|
||||||
25-29](https://nptel.ac.in/courses/117108048)
|
25-29](https://nptel.ac.in/courses/117108048)
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -147,6 +147,3 @@ Additional Resources
|
||||||
recommended to visit. Our test image is generated from this link)
|
recommended to visit. Our test image is generated from this link)
|
||||||
2. [Online course at coursera](https://www.coursera.org/course/images) (First image taken from
|
2. [Online course at coursera](https://www.coursera.org/course/images) (First image taken from
|
||||||
here)
|
here)
|
||||||
|
|
||||||
Exercises
|
|
||||||
---------
|
|
||||||
|
|
|
||||||
|
|
@ -237,9 +237,6 @@ make doxygen
|
||||||
@endcode
|
@endcode
|
||||||
Then open opencv/build/doc/doxygen/html/index.html and bookmark it in the browser.
|
Then open opencv/build/doc/doxygen/html/index.html and bookmark it in the browser.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -116,9 +116,6 @@ Building OpenCV from source
|
||||||
@note We have installed with no other support like TBB, Eigen, Qt, Documentation etc. It would be
|
@note We have installed with no other support like TBB, Eigen, Qt, Documentation etc. It would be
|
||||||
difficult to explain it here. A more detailed video will be added soon or you can just hack around.
|
difficult to explain it here. A more detailed video will be added soon or you can just hack around.
|
||||||
|
|
||||||
Additional Resources
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Exercises
|
Exercises
|
||||||
---------
|
---------
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue
Block a user