move tutorial to imgproc and example to ImgTrans
|
|
@ -3,7 +3,8 @@ Object detection with Generalized Ballard and Guil Hough Transform {#tutorial_ge
|
|||
|
||||
@tableofcontents
|
||||
|
||||
@prev_tutorial{tutorial_traincascade}
|
||||
@prev_tutorial{tutorial_hough_circle}
|
||||
@next_tutorial{tutorial_remap}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
|
@ -39,14 +40,14 @@ Example
|
|||
### Code
|
||||
|
||||
The complete code for this tutorial is shown below.
|
||||
@include samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp
|
||||
@include samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
### Load image, template and setup variables
|
||||
|
||||
@snippet samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp generalized-hough-transform-load-and-setup
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-load-and-setup
|
||||
|
||||
The position vectors will contain the matches the detectors will find.
|
||||
Every entry contains four floating point values:
|
||||
|
|
@ -61,19 +62,19 @@ An example could look as follows: `[200, 100, 0.9, 120]`
|
|||
|
||||
### Setup parameters
|
||||
|
||||
@snippet samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp generalized-hough-transform-setup-parameters
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-setup-parameters
|
||||
|
||||
Finding the optimal values can end up in trial and error and depends on many factors, such as the image resolution.
|
||||
|
||||
### Run detection
|
||||
|
||||
@snippet samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp generalized-hough-transform-run
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-run
|
||||
|
||||
As mentioned above, this step will take some time, especially with larger images and when using Guil.
|
||||
|
||||
### Draw results and show image
|
||||
|
||||
@snippet samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp generalized-hough-transform-draw-results
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-draw-results
|
||||
|
||||
Result
|
||||
------
|
||||
|
Before Width: | Height: | Size: 79 KiB After Width: | Height: | Size: 79 KiB |
|
Before Width: | Height: | Size: 35 KiB After Width: | Height: | Size: 35 KiB |
|
Before Width: | Height: | Size: 39 KiB After Width: | Height: | Size: 39 KiB |
|
Before Width: | Height: | Size: 31 KiB After Width: | Height: | Size: 31 KiB |
|
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 21 KiB |
|
Before Width: | Height: | Size: 42 KiB After Width: | Height: | Size: 42 KiB |
|
|
@ -2,7 +2,7 @@ Hough Circle Transform {#tutorial_hough_circle}
|
|||
======================
|
||||
|
||||
@prev_tutorial{tutorial_hough_lines}
|
||||
@next_tutorial{tutorial_remap}
|
||||
@next_tutorial{tutorial_generalized_hough_ballard_guil}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
Remapping {#tutorial_remap}
|
||||
=========
|
||||
|
||||
@prev_tutorial{tutorial_hough_circle}
|
||||
@prev_tutorial{tutorial_generalized_hough_ballard_guil}
|
||||
@next_tutorial{tutorial_warp_affine}
|
||||
|
||||
Goal
|
||||
|
|
|
|||
|
|
@ -173,6 +173,16 @@ In this section you will learn about the image processing (manipulation) functio
|
|||
|
||||
Where we learn how to detect circles
|
||||
|
||||
- @subpage tutorial_generalized_hough_ballard_guil
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \>= OpenCV 3.4
|
||||
|
||||
*Author:* Markus Heck
|
||||
|
||||
Detect an object in a picture with the help of GeneralizedHoughBallard and GeneralizedHoughGuil.
|
||||
|
||||
- @subpage tutorial_remap
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
|
|
|||
|
|
@ -16,13 +16,3 @@ Ever wondered how your digital camera detects peoples and faces? Look here to fi
|
|||
- @subpage tutorial_traincascade
|
||||
|
||||
This tutorial describes _opencv_traincascade_ application and its parameters.
|
||||
|
||||
- @subpage tutorial_generalized_hough_ballard_guil
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \>= OpenCV 3.4
|
||||
|
||||
*Author:* Markus Heck
|
||||
|
||||
Detect an object in a picture with the help of GeneralizedHoughBallard and GeneralizedHoughGuil.
|
||||
|
|
@ -2,7 +2,6 @@ Cascade Classifier Training {#tutorial_traincascade}
|
|||
===========================
|
||||
|
||||
@prev_tutorial{tutorial_cascade_classifier}
|
||||
@next_tutorial{tutorial_generalized_hough_ballard_guil}
|
||||
|
||||
|
||||
Introduction
|
||||
|
|
|
|||