When a model is partially offloaded to system RAM, we can either
do the calculations on the CPU or we can temporarily transfer the
data to the GPU to do the calculations there. Small batches tend
to be better on the CPU, large batches on the GPU.
The llamarunner used the GPU in most cases and the ollamarunner
used the CPU. Although the ollamarunner saw an improvement in
token generation performance, there was a large performance hit
in prompt processing (3-10x).
There is an existing heuristic to dynamically switch between these
two modes but in practice it doesn't have enough information to
accurately make that decision. This adds authoritative data to make
the check work to get the best of both worlds.
Fixes#12037
We currently allocate the worst case batch for max sized
batches, which corresponds to prompt processing. However,
there are some cases where the generated graph is different
for small and large batches. To ensure that we don't need
to allocate memory later after layout has taken place, we
should run the worst case batch both ways and take the larger
amount of memory.
This does not noticeably affect loading speed as the most expensive
part of this logic is from image processing and that does not
occur during token generation.
Currently, checking the length of prompts for embeddings to ensure
they fit in the context window (and possible truncation) occurs in
two places - the Ollama server and runner. This can lead to
inconsistencies in both the checks and reported number of tokens
processed. Since we have to do this processing in the runner, this
consolidates all of the logic there.
Currently, we only record the time for the last batch when processing
the prompt. This results in unrealistically high numbers for the
old llama runner.
Before:
total duration: 31.273112939s
load duration: 4.97054657s
prompt eval count: 32768 token(s)
prompt eval duration: 235.137439ms
prompt eval rate: 139356.80 tokens/s
eval count: 1873 token(s)
eval duration: 18.173182374s
eval rate: 103.06 tokens/s
After:
total duration: 30.024798033s
load duration: 4.758588663s
prompt eval count: 32768 token(s)
prompt eval duration: 7.779621548s
prompt eval rate: 4212.03 tokens/s
eval count: 1769 token(s)
eval duration: 17.148014223s
eval rate: 103.16 tokens/s
* feat: Bump llama.cpp to df1b612
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(mtmd): Correctly encode text chunks during mtmd tokenization
There can be text chunks that appear interspersed with the image embeddings
that contain template delimiter tokens for some models. These need to be
correctly translated to text tokens.
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* tests: Use MtmdChunk in image_test
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* style: Fix unnecessary conversion linting
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(ggml): Revert changes to ggml_hip.cpp
These changes were done largely by our code assistant and are likely wrong
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Revert changes in mem_nvml.cpp
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Update sync point to 1deee0
This brings in several more optimization commits and model support for
EmbeddingGemma
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Update patches for 1deee0
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: sync for bump to 1deee0
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Bad patch updates with errant `+`
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Bump llama.cpp/ggml to 7049736
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: format-patches after latest bump
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
hardErrCh will deadlock since forwardBatch is blocked on
computeStartedCh which never gets sent. since the response to
hardErrCh is to panic, just panic instead
this change updates how metrics are collected. until now, performance
metrics, specifically initial input processing and subsequent generation
durations, were collected by taking the timestamp when creating a new
sequence, the first token generation, and completing generation. the
processing duration is taken as first token generation sub sequence
creation while generation is taken as completing generation sub first
token generation.
while this approach is an accurate end-to-end metric of processing and
generation, it's not comparable to other tools which only measure the
active, i.e. decode, duration.
this change updates the metrics to only capture decode duration so it
can be more directly compared to other tools
This revamps how we discover GPUs in the system by leveraging the Ollama
runner. This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs. Now the runner does that implicitly based on the actual
device list. In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.
Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.
Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
The context must always be able to store the current batch, so
if the user requests a small context then we should also shrink
the batch to match. This also fixes the TestLongInputContext
test on the new engine. (The old engine already has this behavior.)
* perf: build graph for next batch in parallel to keep GPU busy
This refactors the main run loop of the ollama runner to perform the main GPU
intensive tasks (Compute+Floats) in a go routine so we can prepare the next
batch in parallel to reduce the amount of time the GPU stalls waiting for the
next batch of work.
* tests: tune integration tests for ollama engine
This tunes the integration tests to focus more on models supported
by the new engine.
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).
It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.
In many cases, the caller can't really handle the error and panics.
Empty and Zeros directly panic if they can't allocate memory.
This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
This provides granular information about the backend memory allocations
required by the runner:
- Per backend
- Per layer
- Weights, cache and graph
- Allocation status
This can be used for debugging and validating memory estimates.
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
- Create backend, including enumerating tensors and memory allocation
- Loading tensor data
This allows more flexibility in managing model loading.
We currently preallocate compute graph memory for the worst case
batch of text tokens. This adds support for doing the same for
images.
Note that image models are more complicated than text models in
how they process their inputs so there may be cases where this
approach isn't completely generic for all models. It covers all
currently supported models though.
For some multimodal models (such as gemma3), we create a single
graph that generates the image embedding and then use this in the
text model. The embedding tensor is completely opaque to the runner.
However, this doesn't work if we need to use the embedding in multiple
batches. This can arise if the embedding is larger than the batch size.
In these cases (as with llama4), we would like to create views that
are more appropriately sized. However, if we do this then the original
source tensor is used in multiple graphs, which isn't allowed. To
avoid that problem, models with this pattern compute the embedding
tensor on first use and recreate the individual views. There is no
longer a single vision and text graph.
This codifies the pattern of separating vision and text graphs. The
logic of computing tensors on demand is moved to the runner, so models
no longer have to worry about this. It also gives the runner visibility
into the multimodal tensors, which is important for memory management.
When we restore a sequence from the cache, we split the prompt into
the already used tokens (stored in the cache) and new tokens that
need to be processed. Currently, the references to the used tokens
are coming from the stored previous sequence.
However, even though we know that the used tokens are semantically
equivalent to the prefix of the prompt, tokens can contain pointers
which are no longer valid. As a result, it is better to get the
used tokens from the prompt, which has currently valid pointers.
This doesn't currently have any impact because it isn't possible
to reuse the pointers (which are tensors) anyways. However, it
becomes an issue once we can.
The correct constant to remove all entries to the end of the sequence
for the Ollama engine is math.MaxInt32. -1 is used by the old engine.
The impact of this is currently minimal because it would only occur
in situations that are not supported by the implemented models or
rarely used options.
Some options listed in api/types.go are not supported in
newer models, or have been deprecated in the past. This is
the first of a series of PRs to clean up the API options
Worst case graph preallocation was disabled by a27462b
"ollamarunner: Temporarily disable worst case graph preallocation"
since it caused crashes with large batches when not using the GPU.
This backports upstream llama.cpp commit f057808
"ggml: Don't assert fail when tensor data changes (#13222)", which
fixes the underlying bug and allows reverting the previous workaround.
The context (and therefore associated input tensors) was not being
properly closed when images were being processed. We were trying to
close them but in reality we were closing over an empty list, preventing
anything from actually being freed.
Fixes#10434
When we later have a large batch running purely on a CPU, this
results the error:
GGML_ASSERT(talloc->buffer_id >= 0)
Disabling this means that we will incrementally reallocate memory
as the graph grows.
Fixes#10410