Merge branch 'main' into drifkin/array-head-count-simple

This commit is contained in:
Devon Rifkin 2025-06-23 10:37:31 -07:00
commit b2b270ad5d
289 changed files with 17986 additions and 11657 deletions

View File

@ -103,6 +103,11 @@ jobs:
arch: [amd64] arch: [amd64]
preset: ['CPU'] preset: ['CPU']
include: include:
- os: windows
arch: amd64
preset: 'CUDA 11'
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
cuda-version: '11.3'
- os: windows - os: windows
arch: amd64 arch: amd64
preset: 'CUDA 12' preset: 'CUDA 12'
@ -319,6 +324,7 @@ jobs:
case "$COMPONENT" in case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v11) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;; lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;; lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;

View File

@ -46,7 +46,7 @@ jobs:
include: include:
- preset: CPU - preset: CPU
- preset: CUDA - preset: CUDA
container: nvidia/cuda:12.8.1-devel-ubuntu22.04 container: nvidia/cuda:11.8.0-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87' flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm - preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2 container: rocm/dev-ubuntu-22.04:6.1.2
@ -78,7 +78,7 @@ jobs:
include: include:
- preset: CPU - preset: CPU
- preset: CUDA - preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80' flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
- preset: ROCm - preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
@ -102,7 +102,7 @@ jobs:
$ErrorActionPreference = "Stop" $ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') { if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe" Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_12.8", "nvcc_12.8", "cublas_12.8", "cublas_dev_12.8")) -NoNewWindow -Wait Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
} }
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path $cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path

View File

@ -51,6 +51,8 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu) include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx) include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
add_compile_definitions(NDEBUG)
set(GGML_CPU ON) set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src) add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE) set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)

View File

@ -17,12 +17,20 @@
"name": "CUDA", "name": "CUDA",
"inherits": [ "Default" ] "inherits": [ "Default" ]
}, },
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{ {
"name": "CUDA 12", "name": "CUDA 12",
"inherits": [ "CUDA" ], "inherits": [ "CUDA" ],
"cacheVariables": { "cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120", "CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets" "CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
} }
}, },
{ {
@ -50,6 +58,7 @@
"name": "ROCm 6", "name": "ROCm 6",
"inherits": [ "ROCm" ], "inherits": [ "ROCm" ],
"cacheVariables": { "cacheVariables": {
"CMAKE_HIP_FLAGS": "-parallel-jobs=4",
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-" "AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
} }
} }
@ -70,6 +79,11 @@
"configurePreset": "CUDA", "configurePreset": "CUDA",
"targets": [ "ggml-cuda" ] "targets": [ "ggml-cuda" ]
}, },
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 11"
},
{ {
"name": "CUDA 12", "name": "CUDA 12",
"inherits": [ "CUDA" ], "inherits": [ "CUDA" ],

View File

@ -7,10 +7,14 @@ ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.4.0 ARG JETPACK6VERSION=r36.4.0
ARG CMAKEVERSION=3.31.2 ARG CMAKEVERSION=3.31.2
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64 FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
RUN yum install -y yum-utils \ RUN yum install -y yum-utils \
&& dnf install -y ccache \ && yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo && yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
FROM --platform=linux/arm64 almalinux:8 AS base-arm64 FROM --platform=linux/arm64 almalinux:8 AS base-arm64
# install epel-release for ccache # install epel-release for ccache
@ -34,6 +38,15 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --build --parallel --preset 'CPU' \ && cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8 && cmake --install build --component CPU --strip --parallel 8
FROM base AS cuda-11
ARG CUDA11VERSION=11.3
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS cuda-12 FROM base AS cuda-12
ARG CUDA12VERSION=12.8 ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-} RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
@ -85,9 +98,11 @@ RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama . go build -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64 FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12 COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
FROM --platform=linux/arm64 scratch AS arm64 FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12 COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5 COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6 COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6

View File

@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor WORKDIR=llama/vendor
FETCH_HEAD=e1e8e0991ffd9e99a445c6812bb519d5bac9f4b5 FETCH_HEAD=de4c07f93783a1a96456a44dc16b9db538ee1618
.PHONY: help .PHONY: help
help: help:
@ -15,11 +15,13 @@ help:
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync" @echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
.PHONY: sync .PHONY: sync
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
.PHONY: llama/build-info.cpp llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
llama/build-info.cpp: llama/build-info.cpp.in sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
go generate ./$(@D)
.PHONY: llama/llama.cpp .PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/ llama/llama.cpp: llama/vendor/
@ -30,12 +32,13 @@ ml/backend/ggml/ggml: llama/vendor/ggml/
rsync -arvzc -f "merge $@/.rsync-filter" $< $@ rsync -arvzc -f "merge $@/.rsync-filter" $< $@
PATCHES=$(wildcard llama/patches/*.patch) PATCHES=$(wildcard llama/patches/*.patch)
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
.PHONY: apply-patches .PHONY: apply-patches
.NOTPARALLEL: .NOTPARALLEL:
apply-patches: $(addsuffix ed, $(PATCHES)) apply-patches: $(PATCHED)
%.patched: %.patch llama/patches/.%.patched: llama/patches/%.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi @if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
.PHONY: checkout .PHONY: checkout
@ -57,4 +60,4 @@ format-patches: llama/patches
.PHONE: clean .PHONE: clean
clean: checkout clean: checkout
$(RM) $(addsuffix ed, $(PATCHES)) $(RM) llama/patches/.*.patched

View File

@ -40,10 +40,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart ## Quickstart
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2): To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
```shell ```shell
ollama run llama3.2 ollama run gemma3
``` ```
## Model library ## Model library
@ -315,6 +315,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats) - [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS) - [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics) - [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories) - [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases) - [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG) - [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
@ -404,6 +405,11 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama) - [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable) - [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers) - [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
### Cloud ### Cloud
@ -447,6 +453,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama. - [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal. - [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform) - [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
### Apple Vision Pro ### Apple Vision Pro
@ -526,6 +534,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider) - [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic - [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d) - [Ollama for D](https://github.com/kassane/ollama-d)
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
### Mobile ### Mobile
@ -582,6 +591,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai) - [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c) - [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs) - [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
### Supported backends ### Supported backends

View File

@ -24,7 +24,10 @@ import (
"net/http" "net/http"
"net/url" "net/url"
"runtime" "runtime"
"strconv"
"time"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
"github.com/ollama/ollama/version" "github.com/ollama/ollama/version"
@ -76,6 +79,14 @@ func NewClient(base *url.URL, http *http.Client) *Client {
} }
} }
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
token, err := auth.Sign(ctx, []byte(challenge))
if err != nil {
return "", err
}
return token, nil
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error { func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
var reqBody io.Reader var reqBody io.Reader
var data []byte var data []byte
@ -97,6 +108,21 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
} }
requestURL := c.base.JoinPath(path) requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody) request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
if err != nil { if err != nil {
return err return err
@ -106,6 +132,10 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
request.Header.Set("Accept", "application/json") request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version())) request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
respObj, err := c.http.Do(request) respObj, err := c.http.Do(request)
if err != nil { if err != nil {
return err return err
@ -143,6 +173,22 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
} }
requestURL := c.base.JoinPath(path) requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
var err error
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf) request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
if err != nil { if err != nil {
return err return err
@ -152,6 +198,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
request.Header.Set("Accept", "application/x-ndjson") request.Header.Set("Accept", "application/x-ndjson")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version())) request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
response, err := c.http.Do(request) response, err := c.http.Do(request)
if err != nil { if err != nil {
return err return err

View File

@ -83,6 +83,12 @@ type GenerateRequest struct {
// Options lists model-specific options. For example, temperature can be // Options lists model-specific options. For example, temperature can be
// set through this field, if the model supports it. // set through this field, if the model supports it.
Options map[string]any `json:"options"` Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding. Needs to be a pointer so we can distinguish between false
// (request that thinking _not_ be used) and unset (use the old behavior
// before this option was introduced)
Think *bool `json:"think,omitempty"`
} }
// ChatRequest describes a request sent by [Client.Chat]. // ChatRequest describes a request sent by [Client.Chat].
@ -108,6 +114,10 @@ type ChatRequest struct {
// Options lists model-specific options. // Options lists model-specific options.
Options map[string]any `json:"options"` Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding
Think *bool `json:"think,omitempty"`
} }
type Tools []Tool type Tools []Tool
@ -126,8 +136,11 @@ func (t Tool) String() string {
// role ("system", "user", or "assistant"), the content and an optional list // role ("system", "user", or "assistant"), the content and an optional list
// of images. // of images.
type Message struct { type Message struct {
Role string `json:"role"` Role string `json:"role"`
Content string `json:"content"` Content string `json:"content"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
Images []ImageData `json:"images,omitempty"` Images []ImageData `json:"images,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"` ToolCalls []ToolCall `json:"tool_calls,omitempty"`
} }
@ -478,6 +491,10 @@ type GenerateResponse struct {
// Response is the textual response itself. // Response is the textual response itself.
Response string `json:"response"` Response string `json:"response"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
// Done specifies if the response is complete. // Done specifies if the response is complete.
Done bool `json:"done"` Done bool `json:"done"`

View File

@ -372,3 +372,50 @@ func TestPropertyType_MarshalJSON(t *testing.T) {
}) })
} }
} }
func TestThinking_UnmarshalJSON(t *testing.T) {
trueVal := true
falseVal := false
tests := []struct {
name string
input string
expectedThinking *bool
expectedError bool
}{
{
name: "true",
input: `{ "think": true }`,
expectedThinking: &trueVal,
},
{
name: "false",
input: `{ "think": false }`,
expectedThinking: &falseVal,
},
{
name: "unset",
input: `{ }`,
expectedThinking: nil,
},
{
name: "invalid",
input: `{ "think": "true" }`,
expectedThinking: nil,
expectedError: true,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var req GenerateRequest
err := json.Unmarshal([]byte(test.input), &req)
if test.expectedError {
require.Error(t, err)
} else {
require.NoError(t, err)
assert.Equal(t, test.expectedThinking, req.Think)
}
})
}
}

View File

@ -4,20 +4,14 @@ import (
"fmt" "fmt"
"log/slog" "log/slog"
"os" "os"
"path/filepath"
"strconv" "strconv"
"strings" "strings"
"github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/logutil"
) )
func InitLogging() { func InitLogging() {
level := slog.LevelInfo
if envconfig.Debug() {
level = slog.LevelDebug
}
var logFile *os.File var logFile *os.File
var err error var err error
// Detect if we're a GUI app on windows, and if not, send logs to console // Detect if we're a GUI app on windows, and if not, send logs to console
@ -33,20 +27,8 @@ func InitLogging() {
return return
} }
} }
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})
slog.SetDefault(slog.New(handler))
slog.SetDefault(logutil.NewLogger(logFile, envconfig.LogLevel()))
slog.Info("ollama app started") slog.Info("ollama app started")
} }

View File

@ -1,178 +0,0 @@
package benchmark
import (
"context"
"flag"
"fmt"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// Command line flags
var modelFlag string
func init() {
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
flag.Lookup("m").DefValue = "model"
}
// modelName returns the model name from flags, failing the test if not set
func modelName(b *testing.B) string {
if modelFlag == "" {
b.Fatal("Error: -m flag is required for benchmark tests")
}
return modelFlag
}
type TestCase struct {
name string
prompt string
maxTokens int
}
// runGenerateBenchmark contains the common generate and metrics logic
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
start := time.Now()
var ttft time.Duration
var metrics api.Metrics
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
if ttft == 0 && resp.Response != "" {
ttft = time.Since(start)
}
if resp.Done {
metrics = resp.Metrics
}
return nil
})
// Report custom metrics as part of the benchmark results
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
// Token throughput metrics
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
b.ReportMetric(promptThroughput, "prompt_tok/s")
b.ReportMetric(genThroughput, "gen_tok/s")
// Token counts
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
if err != nil {
b.Fatal(err)
}
}
// BenchmarkColdStart runs benchmarks with model loading from cold state
func BenchmarkColdStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
ctx := b.Context()
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
b.StopTimer()
// Ensure model is unloaded before each iteration
unload(client, m, b)
b.StartTimer()
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// BenchmarkWarmStart runs benchmarks with pre-loaded model
func BenchmarkWarmStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
ctx := b.Context()
// Pre-warm the model
warmup(client, m, tt.prompt, b)
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// setup verifies server and model availability
func setup(b *testing.B) *api.Client {
client, err := api.ClientFromEnvironment()
if err != nil {
b.Fatal(err)
}
if _, err := client.Show(b.Context(), &api.ShowRequest{Model: modelName(b)}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}
return client
}
// warmup ensures the model is loaded and warmed up
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
for range 3 {
err := client.Generate(
context.Background(),
&api.GenerateRequest{
Model: model,
Prompt: prompt,
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
},
func(api.GenerateResponse) error { return nil },
)
if err != nil {
b.Logf("Error during model warm-up: %v", err)
}
}
}
// unload forces model unloading using KeepAlive: 0 parameter
func unload(client *api.Client, model string, b *testing.B) {
req := &api.GenerateRequest{
Model: model,
KeepAlive: &api.Duration{Duration: 0},
}
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
b.Logf("Unload error: %v", err)
}
time.Sleep(1 * time.Second)
}

View File

@ -39,6 +39,7 @@ import (
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser" "github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress" "github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/runner" "github.com/ollama/ollama/runner"
"github.com/ollama/ollama/server" "github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model" "github.com/ollama/ollama/types/model"
@ -46,6 +47,23 @@ import (
"github.com/ollama/ollama/version" "github.com/ollama/ollama/version"
) )
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
if name == "" {
return
}
resp, err := client.Show(ctx, &api.ShowRequest{Model: name})
if err != nil {
return
}
for _, cap := range resp.Capabilities {
if cap == model.CapabilityThinking {
return
}
}
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
}
var errModelfileNotFound = errors.New("specified Modelfile wasn't found") var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
func getModelfileName(cmd *cobra.Command) (string, error) { func getModelfileName(cmd *cobra.Command) (string, error) {
@ -265,6 +283,9 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
req := &api.GenerateRequest{ req := &api.GenerateRequest{
Model: opts.Model, Model: opts.Model,
KeepAlive: opts.KeepAlive, KeepAlive: opts.KeepAlive,
// pass Think here so we fail before getting to the chat prompt if the model doesn't support it
Think: opts.Think,
} }
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil }) return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
@ -299,6 +320,22 @@ func RunHandler(cmd *cobra.Command, args []string) error {
} }
opts.Format = format opts.Format = format
thinkFlag := cmd.Flags().Lookup("think")
if thinkFlag.Changed {
think, err := cmd.Flags().GetBool("think")
if err != nil {
return err
}
opts.Think = &think
} else {
opts.Think = nil
}
hidethinking, err := cmd.Flags().GetBool("hidethinking")
if err != nil {
return err
}
opts.HideThinking = hidethinking
keepAlive, err := cmd.Flags().GetString("keepalive") keepAlive, err := cmd.Flags().GetString("keepalive")
if err != nil { if err != nil {
return err return err
@ -362,6 +399,11 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err return err
} }
opts.Think, err = inferThinkingOption(&info.Capabilities, &opts, thinkFlag.Changed)
if err != nil {
return err
}
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision) opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
// TODO: remove the projector info and vision info checks below, // TODO: remove the projector info and vision info checks below,
@ -747,11 +789,38 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
case float64: case float64:
v = fmt.Sprintf("%g", vData) v = fmt.Sprintf("%g", vData)
case []any: case []any:
n := 3 targetWidth := 10 // Small width where we are displaying the data in a column
if len(vData) < n {
n = len(vData) var itemsToShow int
totalWidth := 1 // Start with 1 for opening bracket
// Find how many we can fit
for i := range vData {
itemStr := fmt.Sprintf("%v", vData[i])
width := runewidth.StringWidth(itemStr)
// Add separator width (", ") for all items except the first
if i > 0 {
width += 2
}
// Check if adding this item would exceed our width limit
if totalWidth+width > targetWidth && i > 0 {
break
}
totalWidth += width
itemsToShow++
}
// Format the output
if itemsToShow < len(vData) {
v = fmt.Sprintf("%v", vData[:itemsToShow])
v = strings.TrimSuffix(v, "]")
v += fmt.Sprintf(" ...+%d more]", len(vData)-itemsToShow)
} else {
v = fmt.Sprintf("%v", vData)
} }
v = fmt.Sprintf("%v", vData[:n])
default: default:
v = fmt.Sprintf("%T", vData) v = fmt.Sprintf("%T", vData)
} }
@ -772,10 +841,19 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
head := func(s string, n int) (rows [][]string) { head := func(s string, n int) (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(s)) scanner := bufio.NewScanner(strings.NewReader(s))
for scanner.Scan() && (len(rows) < n || n < 0) { count := 0
if text := scanner.Text(); text != "" { for scanner.Scan() {
rows = append(rows, []string{"", strings.TrimSpace(text)}) text := strings.TrimSpace(scanner.Text())
if text == "" {
continue
} }
count++
if n < 0 || count <= n {
rows = append(rows, []string{"", text})
}
}
if n >= 0 && count > n {
rows = append(rows, []string{"", "..."})
} }
return return
} }
@ -887,17 +965,19 @@ func PullHandler(cmd *cobra.Command, args []string) error {
type generateContextKey string type generateContextKey string
type runOptions struct { type runOptions struct {
Model string Model string
ParentModel string ParentModel string
Prompt string Prompt string
Messages []api.Message Messages []api.Message
WordWrap bool WordWrap bool
Format string Format string
System string System string
Images []api.ImageData Images []api.ImageData
Options map[string]any Options map[string]any
MultiModal bool MultiModal bool
KeepAlive *api.Duration KeepAlive *api.Duration
Think *bool
HideThinking bool
} }
type displayResponseState struct { type displayResponseState struct {
@ -953,6 +1033,26 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
} }
} }
func thinkingOutputOpeningText(plainText bool) string {
text := "Thinking...\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault + readline.ColorGrey
}
func thinkingOutputClosingText(plainText bool) string {
text := "...done thinking.\n\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault
}
func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) { func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
client, err := api.ClientFromEnvironment() client, err := api.ClientFromEnvironment()
if err != nil { if err != nil {
@ -980,14 +1080,34 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
var latest api.ChatResponse var latest api.ChatResponse
var fullResponse strings.Builder var fullResponse strings.Builder
var role string var role string
var thinkTagOpened bool = false
var thinkTagClosed bool = false
fn := func(response api.ChatResponse) error { fn := func(response api.ChatResponse) error {
p.StopAndClear() if response.Message.Content != "" || !opts.HideThinking {
p.StopAndClear()
}
latest = response latest = response
role = response.Message.Role role = response.Message.Role
if response.Message.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(false))
thinkTagOpened = true
}
displayResponse(response.Message.Thinking, opts.WordWrap, state)
}
content := response.Message.Content content := response.Message.Content
if thinkTagOpened && !thinkTagClosed && content != "" {
fmt.Print(thinkingOutputClosingText(false))
thinkTagClosed = true
}
// purposefully not putting thinking blocks in the response, which would
// only be needed if we later added tool calling to the cli (they get
// filtered out anyway since current models don't expect them unless you're
// about to finish some tool calls)
fullResponse.WriteString(content) fullResponse.WriteString(content)
displayResponse(content, opts.WordWrap, state) displayResponse(content, opts.WordWrap, state)
@ -1004,6 +1124,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
Messages: opts.Messages, Messages: opts.Messages,
Format: json.RawMessage(opts.Format), Format: json.RawMessage(opts.Format),
Options: opts.Options, Options: opts.Options,
Think: opts.Think,
} }
if opts.KeepAlive != nil { if opts.KeepAlive != nil {
@ -1065,13 +1186,32 @@ func generate(cmd *cobra.Command, opts runOptions) error {
}() }()
var state *displayResponseState = &displayResponseState{} var state *displayResponseState = &displayResponseState{}
var thinkTagOpened bool = false
var thinkTagClosed bool = false
plainText := !term.IsTerminal(int(os.Stdout.Fd()))
fn := func(response api.GenerateResponse) error { fn := func(response api.GenerateResponse) error {
p.StopAndClear()
latest = response latest = response
content := response.Response content := response.Response
if response.Response != "" || !opts.HideThinking {
p.StopAndClear()
}
if response.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(plainText))
thinkTagOpened = true
}
displayResponse(response.Thinking, opts.WordWrap, state)
}
if thinkTagOpened && !thinkTagClosed && content != "" {
fmt.Print(thinkingOutputClosingText(plainText))
thinkTagClosed = true
}
displayResponse(content, opts.WordWrap, state) displayResponse(content, opts.WordWrap, state)
return nil return nil
@ -1097,6 +1237,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
System: opts.System, System: opts.System,
Options: opts.Options, Options: opts.Options,
KeepAlive: opts.KeepAlive, KeepAlive: opts.KeepAlive,
Think: opts.Think,
} }
if err := client.Generate(ctx, &request, fn); err != nil { if err := client.Generate(ctx, &request, fn); err != nil {
@ -1200,11 +1341,11 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
return err return err
} }
if err := client.Heartbeat(cmd.Context()); err != nil { if err := client.Heartbeat(cmd.Context()); err != nil {
if !strings.Contains(err.Error(), " refused") { if !(strings.Contains(err.Error(), " refused") || strings.Contains(err.Error(), "could not connect")) {
return err return err
} }
if err := startApp(cmd.Context(), client); err != nil { if err := startApp(cmd.Context(), client); err != nil {
return errors.New("could not connect to ollama app, is it running?") return fmt.Errorf("ollama server not responding - %w", err)
} }
} }
return nil return nil
@ -1282,7 +1423,7 @@ func NewCLI() *cobra.Command {
} }
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"") createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)") createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
showCmd := &cobra.Command{ showCmd := &cobra.Command{
Use: "show MODEL", Use: "show MODEL",
@ -1312,6 +1453,8 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("insecure", false, "Use an insecure registry") runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically") runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
runCmd.Flags().String("format", "", "Response format (e.g. json)") runCmd.Flags().String("format", "", "Response format (e.g. json)")
runCmd.Flags().Bool("think", false, "Whether to use thinking mode for supported models")
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
stopCmd := &cobra.Command{ stopCmd := &cobra.Command{
Use: "stop MODEL", Use: "stop MODEL",
@ -1363,7 +1506,6 @@ func NewCLI() *cobra.Command {
PreRunE: checkServerHeartbeat, PreRunE: checkServerHeartbeat,
RunE: ListRunningHandler, RunE: ListRunningHandler,
} }
copyCmd := &cobra.Command{ copyCmd := &cobra.Command{
Use: "cp SOURCE DESTINATION", Use: "cp SOURCE DESTINATION",
Short: "Copy a model", Short: "Copy a model",
@ -1452,3 +1594,45 @@ func NewCLI() *cobra.Command {
return rootCmd return rootCmd
} }
// If the user has explicitly set thinking options, either through the CLI or
// through the `/set think` or `set nothink` interactive options, then we
// respect them. Otherwise, we check model capabilities to see if the model
// supports thinking. If the model does support thinking, we enable it.
// Otherwise, we unset the thinking option (which is different than setting it
// to false).
//
// If capabilities are not provided, we fetch them from the server.
func inferThinkingOption(caps *[]model.Capability, runOpts *runOptions, explicitlySetByUser bool) (*bool, error) {
if explicitlySetByUser {
return runOpts.Think, nil
}
if caps == nil {
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, err
}
ret, err := client.Show(context.Background(), &api.ShowRequest{
Model: runOpts.Model,
})
if err != nil {
return nil, err
}
caps = &ret.Capabilities
}
thinkingSupported := false
for _, cap := range *caps {
if cap == model.CapabilityThinking {
thinkingSupported = true
}
}
if thinkingSupported {
thinking := true
return &thinking, nil
}
return nil, nil
}

View File

@ -225,6 +225,7 @@ Weigh anchor!
System System
You are a pirate! You are a pirate!
Ahoy, matey! Ahoy, matey!
...
` `
if diff := cmp.Diff(expect, b.String()); diff != "" { if diff := cmp.Diff(expect, b.String()); diff != "" {

View File

@ -44,7 +44,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.") fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
if opts.MultiModal { if opts.MultiModal {
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file")) fmt.Fprintf(os.Stderr, "Use %s to include .jpg, .png, or .webp images.\n", filepath.FromSlash("/path/to/file"))
} }
fmt.Fprintln(os.Stderr, "") fmt.Fprintln(os.Stderr, "")
@ -62,6 +62,8 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting") fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats") fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats") fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
fmt.Fprintln(os.Stderr, "") fmt.Fprintln(os.Stderr, "")
} }
@ -128,6 +130,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
var sb strings.Builder var sb strings.Builder
var multiline MultilineState var multiline MultilineState
var thinkExplicitlySet bool = opts.Think != nil
for { for {
line, err := scanner.Readline() line, err := scanner.Readline()
@ -195,11 +198,19 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Model = args[1] opts.Model = args[1]
opts.Messages = []api.Message{} opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model) fmt.Printf("Loading model '%s'\n", opts.Model)
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
if err != nil {
return err
}
if err := loadOrUnloadModel(cmd, &opts); err != nil { if err := loadOrUnloadModel(cmd, &opts); err != nil {
if strings.Contains(err.Error(), "not found") { if strings.Contains(err.Error(), "not found") {
fmt.Printf("error: %v\n", err) fmt.Printf("error: %v\n", err)
continue continue
} }
if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
continue
}
return err return err
} }
continue continue
@ -260,6 +271,22 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err return err
} }
fmt.Println("Set 'quiet' mode.") fmt.Println("Set 'quiet' mode.")
case "think":
think := true
opts.Think = &think
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
fmt.Println("Set 'think' mode.")
case "nothink":
think := false
opts.Think = &think
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
fmt.Println("Set 'nothink' mode.")
case "format": case "format":
if len(args) < 3 || args[2] != "json" { if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'") fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
@ -448,6 +475,11 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
assistant, err := chat(cmd, opts) assistant, err := chat(cmd, opts)
if err != nil { if err != nil {
if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
sb.Reset()
continue
}
return err return err
} }
if assistant != nil { if assistant != nil {
@ -511,7 +543,7 @@ func extractFileNames(input string) []string {
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20) // Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
// and followed by more characters and a file extension // and followed by more characters and a file extension
// This will capture non filename strings, but we'll check for file existence to remove mismatches // This will capture non filename strings, but we'll check for file existence to remove mismatches
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b` regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
re := regexp.MustCompile(regexPattern) re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1) return re.FindAllString(input, -1)
@ -531,6 +563,8 @@ func extractFileData(input string) (string, []api.ImageData, error) {
return "", imgs, err return "", imgs, err
} }
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp) fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
input = strings.ReplaceAll(input, "'"+nfp+"'", "")
input = strings.ReplaceAll(input, "'"+fp+"'", "")
input = strings.ReplaceAll(input, fp, "") input = strings.ReplaceAll(input, fp, "")
imgs = append(imgs, data) imgs = append(imgs, data)
} }
@ -551,7 +585,7 @@ func getImageData(filePath string) ([]byte, error) {
} }
contentType := http.DetectContentType(buf) contentType := http.DetectContentType(buf)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"} allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
if !slices.Contains(allowedTypes, contentType) { if !slices.Contains(allowedTypes, contentType) {
return nil, fmt.Errorf("invalid image type: %s", contentType) return nil, fmt.Errorf("invalid image type: %s", contentType)
} }

View File

@ -1,6 +1,8 @@
package cmd package cmd
import ( import (
"os"
"path/filepath"
"testing" "testing"
"github.com/stretchr/testify/assert" "github.com/stretchr/testify/assert"
@ -10,14 +12,17 @@ func TestExtractFilenames(t *testing.T) {
// Unix style paths // Unix style paths
input := ` some preamble input := ` some preamble
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg ./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG` /unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG
/unescaped space /six.webp inbetween6 /valid\ path/dir/seven.WEBP`
res := extractFileNames(input) res := extractFileNames(input)
assert.Len(t, res, 5) assert.Len(t, res, 7)
assert.Contains(t, res[0], "one.png") assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[1], "two.jpg") assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[2], "three.jpeg") assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png") assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.JPG") assert.Contains(t, res[4], "five.JPG")
assert.Contains(t, res[5], "six.webp")
assert.Contains(t, res[6], "seven.WEBP")
assert.NotContains(t, res[4], '"') assert.NotContains(t, res[4], '"')
assert.NotContains(t, res, "inbetween1") assert.NotContains(t, res, "inbetween1")
assert.NotContains(t, res, "./1.svg") assert.NotContains(t, res, "./1.svg")
@ -28,10 +33,12 @@ func TestExtractFilenames(t *testing.T) {
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4 /absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6 ./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8 d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG
c:/users/jdoe/eleven.webp inbetween11 c:/program files/someplace/twelve.WebP inbetween12
d:\path with\spaces\thirteen.WEBP some ending
` `
res = extractFileNames(input) res = extractFileNames(input)
assert.Len(t, res, 10) assert.Len(t, res, 13)
assert.NotContains(t, res, "inbetween2") assert.NotContains(t, res, "inbetween2")
assert.Contains(t, res[0], "one.png") assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[0], "c:") assert.Contains(t, res[0], "c:")
@ -49,4 +56,31 @@ d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
assert.Contains(t, res[8], "d:") assert.Contains(t, res[8], "d:")
assert.Contains(t, res[9], "ten.PNG") assert.Contains(t, res[9], "ten.PNG")
assert.Contains(t, res[9], "E:") assert.Contains(t, res[9], "E:")
assert.Contains(t, res[10], "eleven.webp")
assert.Contains(t, res[10], "c:")
assert.Contains(t, res[11], "twelve.WebP")
assert.Contains(t, res[11], "c:")
assert.Contains(t, res[12], "thirteen.WEBP")
assert.Contains(t, res[12], "d:")
}
// Ensure that file paths wrapped in single quotes are removed with the quotes.
func TestExtractFileDataRemovesQuotedFilepath(t *testing.T) {
dir := t.TempDir()
fp := filepath.Join(dir, "img.jpg")
data := make([]byte, 600)
copy(data, []byte{
0xff, 0xd8, 0xff, 0xe0, 0x00, 0x10, 'J', 'F', 'I', 'F',
0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xd9,
})
if err := os.WriteFile(fp, data, 0o600); err != nil {
t.Fatalf("failed to write test image: %v", err)
}
input := "before '" + fp + "' after"
cleaned, imgs, err := extractFileData(input)
assert.NoError(t, err)
assert.Len(t, imgs, 1)
assert.Equal(t, cleaned, "before after")
} }

View File

@ -5,7 +5,7 @@ import (
"errors" "errors"
"os" "os"
"os/exec" "os/exec"
"strings" "regexp"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
) )
@ -19,11 +19,12 @@ func startApp(ctx context.Context, client *api.Client) error {
if err != nil { if err != nil {
return err return err
} }
if !strings.Contains(link, "Ollama.app") { r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
m := r.FindStringSubmatch(link)
if len(m) != 1 {
return errors.New("could not find ollama app") return errors.New("could not find ollama app")
} }
path := strings.Split(link, "Ollama.app") if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
return err return err
} }
return waitForServer(ctx, client) return waitForServer(ctx, client)

View File

@ -4,17 +4,27 @@ import (
"context" "context"
"errors" "errors"
"fmt" "fmt"
"log/slog"
"os" "os"
"os/exec" "os/exec"
"path"
"path/filepath" "path/filepath"
"strings" "strings"
"syscall" "syscall"
"unsafe"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"golang.org/x/sys/windows"
)
const (
Installer = "OllamaSetup.exe"
) )
func startApp(ctx context.Context, client *api.Client) error { func startApp(ctx context.Context, client *api.Client) error {
// log.Printf("XXX Attempting to find and start ollama app") if len(isProcRunning(Installer)) > 0 {
return fmt.Errorf("upgrade in progress...")
}
AppName := "ollama app.exe" AppName := "ollama app.exe"
exe, err := os.Executable() exe, err := os.Executable()
if err != nil { if err != nil {
@ -35,14 +45,11 @@ func startApp(ctx context.Context, client *api.Client) error {
} }
} }
} }
// log.Printf("XXX attempting to start app %s", appExe)
cmd_path := "c:\\Windows\\system32\\cmd.exe" cmd_path := "c:\\Windows\\system32\\cmd.exe"
cmd := exec.Command(cmd_path, "/c", appExe) cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
// TODO - these hide flags aren't working - still pops up a command window for some reason
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true} cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
// TODO this didn't help either...
cmd.Stdin = strings.NewReader("") cmd.Stdin = strings.NewReader("")
cmd.Stdout = os.Stdout cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr cmd.Stderr = os.Stderr
@ -56,3 +63,50 @@ func startApp(ctx context.Context, client *api.Client) error {
} }
return waitForServer(ctx, client) return waitForServer(ctx, client)
} }
func isProcRunning(procName string) []uint32 {
pids := make([]uint32, 2048)
var ret uint32
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
if ret > uint32(len(pids)) {
pids = make([]uint32, ret+10)
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
}
if ret < uint32(len(pids)) {
pids = pids[:ret]
}
var matches []uint32
for _, pid := range pids {
if pid == 0 {
continue
}
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
if err != nil {
continue
}
defer windows.CloseHandle(hProcess)
var module windows.Handle
var cbNeeded uint32
cb := (uint32)(unsafe.Sizeof(module))
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
continue
}
var sz uint32 = 1024 * 8
moduleName := make([]uint16, sz)
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
continue
}
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
if strings.EqualFold(exeFile, procName) {
matches = append(matches, pid)
}
}
return matches
}

63
cmd/warn_thinking_test.go Normal file
View File

@ -0,0 +1,63 @@
package cmd
import (
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"os"
"strings"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
// Test that a warning is printed when thinking is requested but not supported.
func TestWarnMissingThinking(t *testing.T) {
cases := []struct {
capabilities []model.Capability
expectWarn bool
}{
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
{capabilities: []model.Capability{}, expectWarn: true},
}
for _, tc := range cases {
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
}
var req api.ShowRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
t.Fatalf("decode request: %v", err)
}
resp := api.ShowResponse{Capabilities: tc.capabilities}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("encode response: %v", err)
}
}))
defer srv.Close()
t.Setenv("OLLAMA_HOST", srv.URL)
client, err := api.ClientFromEnvironment()
if err != nil {
t.Fatal(err)
}
oldStderr := os.Stderr
r, w, _ := os.Pipe()
os.Stderr = w
ensureThinkingSupport(t.Context(), client, "m")
w.Close()
os.Stderr = oldStderr
out, _ := io.ReadAll(r)
warned := strings.Contains(string(out), "warning:")
if tc.expectWarn && !warned {
t.Errorf("expected warning, got none")
}
if !tc.expectWarn && warned {
t.Errorf("did not expect warning, got: %s", string(out))
}
}
}

View File

@ -1,6 +1,7 @@
package convert package convert
import ( import (
"cmp"
"encoding/json" "encoding/json"
"errors" "errors"
"fmt" "fmt"
@ -14,13 +15,12 @@ import (
) )
type ModelParameters struct { type ModelParameters struct {
Architectures []string `json:"architectures"` Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"` VocabSize uint32 `json:"vocab_size"`
TextModel TextParameters `json:"text_config"`
}
type TextParameters struct { TextModel struct {
VocabSize uint32 `json:"vocab_size"` VocabSize uint32 `json:"vocab_size"`
} `json:"text_config"`
} }
type AdapterParameters struct { type AdapterParameters struct {
@ -53,8 +53,11 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
} }
for _, sv := range t.SpecialVocabulary { for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
if len(sv.IDs) > 0 {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
}
} }
return kv return kv
@ -173,6 +176,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
switch p.Architectures[0] { switch p.Architectures[0] {
case "LlamaForCausalLM": case "LlamaForCausalLM":
conv = &llamaModel{} conv = &llamaModel{}
case "MllamaForConditionalGeneration":
conv = &mllamaModel{}
case "Llama4ForConditionalGeneration": case "Llama4ForConditionalGeneration":
conv = &llama4Model{} conv = &llama4Model{}
case "Mistral3ForConditionalGeneration": case "Mistral3ForConditionalGeneration":
@ -189,6 +194,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &phi3Model{} conv = &phi3Model{}
case "Qwen2ForCausalLM": case "Qwen2ForCausalLM":
conv = &qwen2Model{} conv = &qwen2Model{}
case "Qwen2_5_VLForConditionalGeneration":
conv = &qwen25VLModel{}
case "BertModel": case "BertModel":
conv = &bertModel{} conv = &bertModel{}
case "CohereForCausalLM": case "CohereForCausalLM":
@ -212,24 +219,22 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
return err return err
} }
vocabSize := int(p.VocabSize) vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
if vocabSize == 0 {
tVocabSize := int(p.TextModel.VocabSize)
vocabSize = tVocabSize
}
switch { switch {
case vocabSize == 0: case vocabSize == 0:
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens)) slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
case vocabSize > len(t.Vocabulary.Tokens): case vocabSize > len(t.Vocabulary.Tokens):
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens)) slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) { for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i)) t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1) t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined) t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
} }
case vocabSize < len(t.Vocabulary.Tokens): case vocabSize < len(t.Vocabulary.Tokens):
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize) slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
default: default:
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens)) slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
} }

View File

@ -139,7 +139,8 @@ func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
} }
for _, t := range ts { for _, t := range ts {
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") { if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") ||
strings.HasSuffix(t.Name(), "attn_q_proj.weight") || strings.HasSuffix(t.Name(), "attn_k_proj.weight") {
if !p.skipRepack { if !p.skipRepack {
t.SetRepacker(p.repack) t.SetRepacker(p.repack)
} }
@ -181,9 +182,9 @@ func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]floa
} }
var heads uint32 var heads uint32
if strings.HasSuffix(name, "attn_q.weight") { if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_q_proj.weight") {
heads = p.NumAttentionHeads heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight") { } else if strings.HasSuffix(name, "attn_k.weight") || strings.HasSuffix(name, "attn_k_proj.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else { } else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name) return nil, fmt.Errorf("unknown tensor for repack: %s", name)

View File

@ -2,9 +2,6 @@ package convert
import ( import (
"fmt" "fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml" "github.com/ollama/ollama/fs/ggml"
) )
@ -30,65 +27,38 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
} }
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor { func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
oldnew := []string{ merges := make([]merge, 0, p.NumHiddenLayers*6)
"model.layers", "blk", for i := range p.NumHiddenLayers {
"w1", "ffn_gate_exps", merges = append(merges, merge{
"w2", "ffn_down_exps", fmt.Sprintf("blk.%d.*.w1.weight", i),
"w3", "ffn_up_exps", fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
} }, merge{
fmt.Sprintf("blk.%d.*.w1.bias", i),
for i := range p.NumLocalExperts { fmt.Sprintf("blk.%d.ffn_gate_exps.bias", i),
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".") }, merge{
} fmt.Sprintf("blk.%d.*.w2.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor }, merge{
namer := strings.NewReplacer(oldnew...) fmt.Sprintf("blk.%d.*.w2.bias", i),
experts := make(map[string]experts) fmt.Sprintf("blk.%d.ffn_up_exps.bias", i),
}, merge{
// merge experts into a single tensor while removing them from ts fmt.Sprintf("blk.%d.*.w3.weight", i),
ts = slices.DeleteFunc(ts, func(t Tensor) bool { fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") { }, merge{
return false fmt.Sprintf("blk.%d.*.w3.bias", i),
} fmt.Sprintf("blk.%d.ffn_down_exps.bias", i),
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []*ggml.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, &ggml.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
}) })
} }
out, ts := mergeTensors(ts, merges...)
return append(out, p.llamaModel.Tensors(ts)...) return append(out, p.llamaModel.Tensors(ts)...)
} }
func (p *mixtralModel) Replacements() []string { func (p *mixtralModel) Replacements() []string {
return append( return append(
p.llamaModel.Replacements(), p.llamaModel.Replacements(),
"model.layers", "blk",
"block_sparse_moe.gate", "ffn_gate_inp", "block_sparse_moe.gate", "ffn_gate_inp",
"block_sparse_moe.experts.", ".",
) )
} }
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

179
convert/convert_mllama.go Normal file
View File

@ -0,0 +1,179 @@
package convert
import (
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type mllamaModel struct {
ModelParameters
TextModel struct {
llamaModel
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
} `json:"text_config"`
VisionModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NumGlobalLayers uint32 `json:"num_global_layers"`
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"attention_heads"`
ImageSize uint32 `json:"image_size"`
PatchSize uint32 `json:"patch_size"`
NumChannels uint32 `json:"num_channels"`
MaxNumTiles uint32 `json:"max_num_tiles"`
NormEpsilon float32 `json:"norm_eps"`
RopeTheta float32 `json:"rope.freq_base"`
} `json:"vision_config"`
}
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "mllama"
for k, v := range m.TextModel.KV(t) {
if strings.HasPrefix(k, "llama.") {
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
}
}
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
return kv
}
func (m *mllamaModel) Replacements() []string {
return append(
m.TextModel.Replacements(),
"language_model.", "",
"gate_attn", "attn_gate",
"gate_ffn", "ffn_gate",
"cross_attn.", "cross_attn_",
"vision_model", "v",
"class_embedding", "class_embd",
"patch_embedding", "patch_embd",
"gated_positional_embedding.tile_embedding", "tile_position_embd",
"gated_positional_embedding.embedding", "position_embd.weight",
"gated_positional_embedding", "position_embd",
"embedding.weight", "weight",
"pre_tile_positional_embedding", "pre_tile_position_embd",
"post_tile_positional_embedding", "post_tile_position_embd",
"layernorm_pre", "pre_ln",
"layernorm_post", "post_ln",
"global_transformer.layers", "global.blk",
"transformer.layers", "blk",
"mlp.fc1", "ffn_up",
"mlp.fc2", "ffn_down",
"multi_modal_projector", "mm.0",
)
}
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var text []Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
text = append(text, t)
} else if t.Name() == "v.position_embd.gate" {
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
tt := t.Clone()
tt.SetRepacker(m.repack(name))
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: tt,
})
}
} else {
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
t.SetRepacker(m.repack(t.Name()))
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return append(out, m.TextModel.Tensors(text)...)
}
func (m *mllamaModel) repack(name string) Repacker {
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
dims := make([]int, len(shape))
for i, dim := range shape {
dims[i] = int(dim)
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
heads := m.VisionModel.AttentionHeads
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := t.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := t.Reshape(dims...); err != nil {
return nil, err
}
if err := t.Transpose(); err != nil {
return nil, err
}
} else {
t, err = tensor.Tanh(t)
if err != nil {
return nil, err
}
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err != nil {
return nil, err
}
}
}
t = tensor.Materialize(t)
// flatten tensor so it can be return as a vector
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
}
}

View File

@ -15,6 +15,7 @@ type qwen2Model struct {
Type string `json:"type"` Type string `json:"type"`
Factor ropeFactor `json:"factor"` Factor ropeFactor `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"` OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
MropeSection []int32 `json:"mrope_section"`
} `json:"rope_scaling"` } `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"` RMSNormEPS float32 `json:"rms_norm_eps"`
} }
@ -39,6 +40,8 @@ func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
case "yarn": case "yarn":
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
case "mrope", "default":
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
default: default:
panic("unknown rope scaling type") panic("unknown rope scaling type")
} }

102
convert/convert_qwen25vl.go Normal file
View File

@ -0,0 +1,102 @@
package convert
import (
"cmp"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type qwen25VLModel struct {
qwen2Model
VisionModel struct {
Depth uint32 `json:"depth"`
HiddenSize uint32 `json:"hidden_size"`
NumHeads uint32 `json:"num_heads"`
InChannels uint32 `json:"in_chans"`
PatchSize uint32 `json:"patch_size"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
SpatialPatchSize uint32 `json:"spatial_patch_size"`
WindowSize uint32 `json:"window_size"`
RMSNormEps float32 `json:"layer_norm_epsilon"`
RopeTheta float32 `json:"rope_theta"`
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
TemporalPatchSize uint32 `json:"temporal_patch_size"`
} `json:"vision_config"`
}
var _ ModelConverter = (*qwen25VLModel)(nil)
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen25vl"
for k, v := range q.qwen2Model.KV(t) {
if strings.HasPrefix(k, "qwen2.") {
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
}
}
if q.VisionModel.FullAttentionBlocks == nil {
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
}
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
return kv
}
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if strings.Contains(t.Name(), "patch_embed.proj") {
for t := range splitDim(t, 2,
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
) {
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
out = append(out, t)
}
} else if strings.Contains(t.Name(), "attn.qkv") {
out = append(out, slices.Collect(splitDim(t, 0,
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
))...)
} else {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return out
}
func (p *qwen25VLModel) Replacements() []string {
return append(
p.qwen2Model.Replacements(),
"visual", "v",
"blocks", "blk",
"attn.proj", "attn_out",
"norm1", "ln1",
"norm2", "ln2",
)
}

View File

@ -47,7 +47,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
} }
t.Cleanup(func() { r.Close() }) t.Cleanup(func() { r.Close() })
m, _, err := ggml.Decode(r, -1) m, err := ggml.Decode(r, -1)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
@ -332,7 +332,7 @@ func TestConvertAdapter(t *testing.T) {
} }
defer r.Close() defer r.Close()
m, _, err := ggml.Decode(r, -1) m, err := ggml.Decode(r, -1)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }

View File

@ -38,7 +38,10 @@ const (
func (t tensorBase) Kind() uint32 { func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") || if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
t.name == "token_types.weight" || t.name == "token_types.weight" ||
t.name == "v.positional_embedding_vlm" { t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" ||
t.name == "v.pre_tile_position_embd.weight" ||
t.name == "v.post_tile_position_embd.weight" {
// these tensors are always F32 // these tensors are always F32
return 0 return 0
} }

129
convert/tensor.go Normal file
View File

@ -0,0 +1,129 @@
package convert
import (
"cmp"
"io"
"iter"
"path"
"slices"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type split struct {
*strings.Replacer
dim int
// fn is an optional function to apply to the tensor after slicing
fn func(tensor.Tensor) (tensor.Tensor, error)
}
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
// is split evenly based on the number of replacers provided unless a specific count is given.
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
return func(yield func(*ggml.Tensor) bool) {
var offset int
for _, split := range splits {
t := t.Clone()
shape := slices.Clone(t.Shape())
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
offset += int(shape[dim])
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tt.Slice(slice...)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
if split.fn != nil {
tt, err = split.fn(tt)
if err != nil {
return nil, err
}
}
// flatten tensor so it can be written as a vector
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
})
if !yield(&ggml.Tensor{
Name: split.Replace(t.Name()),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
}) {
break
}
}
}
}
type merge struct {
pattern, name string
}
// mergeTensors merges tensors that match a given pattern into a single tensor.
func mergeTensors(unmatched []Tensor, merges ...merge) (out []*ggml.Tensor, _ []Tensor) {
var matched []Tensor
for i := range merges {
matched, unmatched = slicesSplitFunc(unmatched, func(t Tensor) bool {
matched, _ := path.Match(merges[i].pattern, t.Name())
return matched
})
if len(matched) > 0 {
out = append(out, &ggml.Tensor{
Name: merges[i].name,
Kind: matched[0].Kind(),
Shape: append([]uint64{uint64(len(matched))}, matched[0].Shape()...),
WriterTo: mergeGroup(matched),
})
}
}
return out, unmatched
}
// slicesSplitFunc splits a slice into two slices based on a predicate function.
func slicesSplitFunc[S ~[]E, E comparable](s S, fn func(e E) bool) (matched, unmatched S) {
for _, e := range s {
if fn(e) {
matched = append(matched, e)
} else {
unmatched = append(unmatched, e)
}
}
return matched, unmatched
}
type mergeGroup []Tensor
func (g mergeGroup) WriteTo(w io.Writer) (int64, error) {
for _, t := range g {
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

402
convert/tensor_test.go Normal file
View File

@ -0,0 +1,402 @@
package convert
import (
"bytes"
"encoding/binary"
"io"
"iter"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
)
type fakeTensor struct {
name string
shape []uint64
data []float32
repacker Repacker
}
func (f fakeTensor) Name() string {
return f.name
}
func (f fakeTensor) Shape() []uint64 {
return f.shape
}
func (f fakeTensor) Kind() uint32 {
return 0
}
func (f *fakeTensor) SetRepacker(fn Repacker) {
f.repacker = fn
}
func (f fakeTensor) Clone() Tensor {
return &fakeTensor{
name: f.name,
shape: slices.Clone(f.shape),
data: slices.Clone(f.data),
repacker: f.repacker,
}
}
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
data := f.data
if f.repacker != nil {
data, err = f.repacker(f.name, data, f.shape)
if err != nil {
return 0, err
}
}
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
return 0, err
}
return int64(len(data) * 4), nil
}
func mul(shape []uint64) int {
n := 1
for _, dim := range shape {
n *= int(dim)
}
return n
}
func TestSplitDim(t *testing.T) {
r := fakeTensor{
name: "a.b",
shape: []uint64{3, 4},
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
}
t.Run("no split", func(t *testing.T) {
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
if tt.Name != "x.b" {
t.Fatalf("expected name 'x', got '%s'", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 4}) {
t.Fatalf("expected shape [3, 4], got %v", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}) {
t.Fatalf("expected data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], got %v", f32s)
}
}
})
t.Run("even split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y")},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{2, 3, 6, 7, 10, 11}) {
t.Fatal("expected data [2, 3, 6, 7, 10, 11], got", f32s)
}
}
})
t.Run("uneven split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{2, 4}) {
t.Fatal("expected shape [2, 4], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}) {
t.Fatal("expected data [0, 1, 2, 3, 4, 5, 6, 7], got", f32s)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{1, 4}) {
t.Fatal("expected shape [1, 4], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{8, 9, 10, 11}) {
t.Fatal("expected data [8, 9, 10, 11], got", f32s)
}
}
})
t.Run("split with transpose", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
return tensor.Transpose(tt, 1, 0)
}},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{2, 6, 10, 3, 7, 11}) {
t.Fatal("expected data [2, 6, 10, 3, 7, 11], got", f32s)
}
}
})
}
func TestMerge(t *testing.T) {
unmatched := []Tensor{
&fakeTensor{
name: "a.0.b",
shape: []uint64{5, 2},
data: []float32{10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
},
&fakeTensor{
name: "a.1.b",
shape: []uint64{5, 2},
data: []float32{20, 21, 22, 23, 24, 25, 26, 27, 28, 29},
},
&fakeTensor{
name: "c.0.d",
shape: []uint64{5, 2},
data: []float32{30, 31, 32, 33, 34, 35, 36, 37, 38, 39},
},
&fakeTensor{
name: "c.1.d",
shape: []uint64{5, 2},
data: []float32{40, 41, 42, 43, 44, 45, 46, 47, 48, 49},
},
&fakeTensor{
name: "e.0.f",
shape: []uint64{5, 2},
data: []float32{50, 51, 52, 53, 54, 55, 56, 57, 58, 59},
},
}
checkMatched := func(t *testing.T, n int, matched []*ggml.Tensor) {
for i := range n {
got := matched[i]
if diff := cmp.Diff([]uint64{2, 5, 2}, got.Shape); diff != "" {
t.Errorf("unexpected (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := got.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, 20)
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
offset := 10 + (i * 20)
want := make([]float32, 20)
for j := range 20 {
want[j] = float32(offset + j)
}
if diff := cmp.Diff(want, f32s); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
}
t.Run("single merge", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"})
if len(unmatched) != 3 {
t.Error("expected 3 remaining tensors, got", len(unmatched))
}
if len(matched) != 1 {
t.Error("expected 1 merged tensor, got", len(matched))
}
checkMatched(t, 1, matched)
})
t.Run("multiple merges", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"}, merge{"c.*.d", "c.d"})
if len(unmatched) != 1 {
t.Error("expected 1 remaining tensors, got", len(unmatched))
}
if len(matched) != 2 {
t.Error("expected 2 merged tensor, got", len(matched))
}
checkMatched(t, 2, matched)
})
t.Run("no match", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"x.*.y", "x.y"})
if len(unmatched) != 5 {
t.Error("expected 5 remaining tensors, got", len(unmatched))
}
if len(matched) != 0 {
t.Error("expected no merged tensors, got", len(matched))
}
})
}

View File

@ -110,6 +110,7 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
} }
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) { if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
// noop
} else if err != nil { } else if err != nil {
return nil, err return nil, err
} else { } else {
@ -171,6 +172,34 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
} }
} }
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
for _, st := range specialTokenTypes {
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
var ids []int32
if err := json.Unmarshal(bts, &ids); err != nil {
// value is not a list so the existing ID is used
continue
}
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
return sv.Type == st
}); i >= 0 {
t.SpecialVocabulary[i].IDs = ids
}
}
}
}
return t, nil return t, nil
} }
@ -280,6 +309,9 @@ type SpecialVocabulary struct {
ID int ID int
Content string Content string
AddToken bool AddToken bool
// IDs is populated by generation_config.json
IDs []int32
} }
func (sv SpecialVocabulary) Key() string { func (sv SpecialVocabulary) Key() string {

View File

@ -247,6 +247,67 @@ func TestParseTokenizer(t *testing.T) {
Pre: "default", Pre: "default",
}, },
}, },
{
name: "generation config eos token ids",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<bos>",
"special": true
},
{
"id": 1,
"content": "<eos>",
"special": true
},
{
"id": 2,
"content": "<eot>",
"special": true
},
{
"id": 3,
"content": "<eom>",
"special": true
}
],
"model": {
"vocab": {
"<bos>": 0,
"<eos>": 1,
"<eot>": 2,
"<eom>": 3
}
}
}`),
"tokenizer_config.json": strings.NewReader(`{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": "<bos>",
"eos_token": "<eos>"
}`),
"generation_config.json": strings.NewReader(`{
"bos_token_id": 0,
"eos_token_id": [1, 2, 3]
}`),
}),
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
Scores: []float32{0, 1, 2, 3},
Types: []int32{3, 3, 3, 3},
},
SpecialVocabulary: []*SpecialVocabulary{
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
},
Pre: "default",
},
},
} }
for _, tt := range cases { for _, tt := range cases {

View File

@ -3,7 +3,6 @@
package discover package discover
import ( import (
"fmt"
"log/slog" "log/slog"
"os" "os"
"regexp" "regexp"
@ -60,8 +59,6 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers // driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) { if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
// The detected driver is older than Feb 2023
slog.Warn("old CUDA driver detected - please upgrade to a newer driver", "version", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor))
return "v11" return "v11"
} }
return "v12" return "v12"

View File

@ -670,7 +670,7 @@ func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, e
} }
func getVerboseState() C.uint16_t { func getVerboseState() C.uint16_t {
if envconfig.Debug() { if envconfig.LogLevel() < slog.LevelInfo {
return C.uint16_t(1) return C.uint16_t(1)
} }
return C.uint16_t(0) return C.uint16_t(0)

View File

@ -12,7 +12,7 @@ import (
// '../lib/ollama' on Linux and the executable's directory on macOS // '../lib/ollama' on Linux and the executable's directory on macOS
// note: distribution builds, additional GPU-specific libraries are // note: distribution builds, additional GPU-specific libraries are
// found in subdirectories of the returned path, such as // found in subdirectories of the returned path, such as
// 'cuda_v12', 'rocm', etc. // 'cuda_v11', 'cuda_v12', 'rocm', etc.
var LibOllamaPath string = func() string { var LibOllamaPath string = func() string {
exe, err := os.Executable() exe, err := os.Executable()
if err != nil { if err != nil {

View File

@ -19,7 +19,7 @@
### Model names ### Model names
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version. Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q8_0` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
### Durations ### Durations
@ -43,6 +43,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
- `prompt`: the prompt to generate a response for - `prompt`: the prompt to generate a response for
- `suffix`: the text after the model response - `suffix`: the text after the model response
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`) - `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
- `think`: (for thinking models) should the model think before responding?
Advanced parameters (optional): Advanced parameters (optional):
@ -490,11 +491,13 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names) - `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory - `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: list of tools in JSON for the model to use if supported - `tools`: list of tools in JSON for the model to use if supported
- `think`: (for thinking models) should the model think before responding?
The `message` object has the following fields: The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool` - `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message - `content`: the content of the message
- `thinking`: (for thinking models) the model's thinking process
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`) - `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools in JSON that the model wants to use - `tool_calls` (optional): a list of tools in JSON that the model wants to use
@ -952,19 +955,8 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
| Type | Recommended | | Type | Recommended |
| --- | :-: | | --- | :-: |
| q2_K | |
| q3_K_L | |
| q3_K_M | |
| q3_K_S | |
| q4_0 | |
| q4_1 | |
| q4_K_M | * | | q4_K_M | * |
| q4_K_S | | | q4_K_S | |
| q5_0 | |
| q5_1 | |
| q5_K_M | |
| q5_K_S | |
| q6_K | |
| q8_0 | * | | q8_0 | * |
### Examples ### Examples
@ -1009,8 +1001,8 @@ Quantize a non-quantized model.
```shell ```shell
curl http://localhost:11434/api/create -d '{ curl http://localhost:11434/api/create -d '{
"model": "llama3.1:quantized", "model": "llama3.2:quantized",
"from": "llama3.1:8b-instruct-fp16", "from": "llama3.2:3b-instruct-fp16",
"quantize": "q4_K_M" "quantize": "q4_K_M"
}' }'
``` ```
@ -1020,12 +1012,14 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned: A stream of JSON objects is returned:
```json ```json
{"status":"quantizing F16 model to Q4_K_M"} {"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":12302}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"} {"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":6433687552}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"} {"status":"verifying conversion"}
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"} {"status":"creating new layer sha256:fb7f4f211b89c6c4928ff4ddb73db9f9c0cfca3e000c3e40d6cf27ddc6ca72eb"}
{"status":"using existing layer sha256:966de95ca8a62200913e3f8bfbf84c8494536f1b94b49166851e76644e966396"}
{"status":"using existing layer sha256:fcc5a6bec9daf9b561a68827b67ab6088e1dba9d1fa2a50d7bbcc8384e0a265d"}
{"status":"using existing layer sha256:a70ff7e570d97baaf4e62ac6e6ad9975e04caa6d900d3742d37698494479e0cd"}
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"} {"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
{"status":"writing manifest"} {"status":"writing manifest"}
{"status":"success"} {"status":"success"}
``` ```
@ -1163,29 +1157,37 @@ A single JSON object will be returned.
{ {
"models": [ "models": [
{ {
"name": "codellama:13b", "name": "deepseek-r1:latest",
"modified_at": "2023-11-04T14:56:49.277302595-07:00", "model": "deepseek-r1:latest",
"size": 7365960935, "modified_at": "2025-05-10T08:06:48.639712648-07:00",
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697", "size": 4683075271,
"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163",
"details": { "details": {
"parent_model": "",
"format": "gguf", "format": "gguf",
"family": "llama", "family": "qwen2",
"families": null, "families": [
"parameter_size": "13B", "qwen2"
"quantization_level": "Q4_0" ],
"parameter_size": "7.6B",
"quantization_level": "Q4_K_M"
} }
}, },
{ {
"name": "llama3:latest", "name": "llama3.2:latest",
"modified_at": "2023-12-07T09:32:18.757212583-08:00", "model": "llama3.2:latest",
"size": 3825819519, "modified_at": "2025-05-04T17:37:44.706015396-07:00",
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e", "size": 2019393189,
"digest": "a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72",
"details": { "details": {
"parent_model": "",
"format": "gguf", "format": "gguf",
"family": "llama", "family": "llama",
"families": null, "families": [
"parameter_size": "7B", "llama"
"quantization_level": "Q4_0" ],
"parameter_size": "3.2B",
"quantization_level": "Q4_K_M"
} }
} }
] ]

View File

@ -1,59 +0,0 @@
# Benchmark
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
## When to use
Run these benchmarks when:
- Making changes to the model inference engine
- Modifying model loading/unloading logic
- Changing prompt processing or token generation code
- Implementing a new model architecture
- Testing performance across different hardware setups
## Prerequisites
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
## Usage and Examples
>[!NOTE]
>All commands must be run from the root directory of the Ollama project.
Basic syntax:
```bash
go test -bench=. ./benchmark/... -m $MODEL_NAME
```
Required flags:
- `-bench=.`: Run all benchmarks
- `-m`: Model name to benchmark
Optional flags:
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
Common usage patterns:
Single benchmark run with a model specified:
```bash
go test -bench=. ./benchmark/... -m llama3.3
```
## Output metrics
The benchmark reports several key metrics:
- `gen_tok/s`: Generated tokens per second
- `prompt_tok/s`: Prompt processing tokens per second
- `ttft_ms`: Time to first token in milliseconds
- `load_ms`: Model load time in milliseconds
- `gen_tokens`: Total tokens generated
- `prompt_tokens`: Total prompt tokens processed
Each benchmark runs two scenarios:
- Cold start: Model is loaded from disk for each test
- Warm start: Model is pre-loaded in memory
Three prompt lengths are tested for each scenario:
- Short prompt (100 tokens)
- Medium prompt (500 tokens)
- Long prompt (1000 tokens)

View File

@ -118,7 +118,7 @@ To run tests, use `go test`:
go test ./... go test ./...
``` ```
> NOTE: In rare cirumstances, you may nedd to change a package using the new > NOTE: In rare cirumstances, you may need to change a package using the new
> "synctest" package in go1.24. > "synctest" package in go1.24.
> >
> If you do not have the "synctest" package enabled, you will not see build or > If you do not have the "synctest" package enabled, you will not see build or

View File

@ -1,6 +1,6 @@
# GPU # GPU
## Nvidia ## Nvidia
Ollama supports Nvidia GPUs with compute capability 5.0+ and driver version 531 and newer. Ollama supports Nvidia GPUs with compute capability 5.0+.
Check your compute compatibility to see if your card is supported: Check your compute compatibility to see if your card is supported:
[https://developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus) [https://developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus)

View File

@ -132,22 +132,12 @@ success
### Supported Quantizations ### Supported Quantizations
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0` - `q8_0`
#### K-means Quantizations #### K-means Quantizations
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S` - `q4_K_S`
- `q4_K_M` - `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
## Sharing your model on ollama.com ## Sharing your model on ollama.com

View File

@ -112,8 +112,8 @@ sudo systemctl status ollama
> While AMD has contributed the `amdgpu` driver upstream to the official linux > While AMD has contributed the `amdgpu` driver upstream to the official linux
> kernel source, the version is older and may not support all ROCm features. We > kernel source, the version is older and may not support all ROCm features. We
> recommend you install the latest driver from > recommend you install the latest driver from
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon > [AMD](https://www.amd.com/en/support/download/linux-drivers.html) for best support
> GPU. > of your Radeon GPU.
## Customizing ## Customizing

View File

@ -43,7 +43,7 @@ Ollama includes multiple LLM libraries compiled for different GPUs and CPU vecto
In the server log, you will see a message that looks something like this (varies from release to release): In the server log, you will see a message that looks something like this (varies from release to release):
``` ```
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v12 rocm_v5] Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
``` ```
**Experimental LLM Library Override** **Experimental LLM Library Override**

View File

@ -149,9 +149,22 @@ func Bool(k string) func() bool {
} }
} }
// LogLevel returns the log level for the application.
// Values are 0 or false INFO (Default), 1 or true DEBUG, 2 TRACE
func LogLevel() slog.Level {
level := slog.LevelInfo
if s := Var("OLLAMA_DEBUG"); s != "" {
if b, _ := strconv.ParseBool(s); b {
level = slog.LevelDebug
} else if i, _ := strconv.ParseInt(s, 10, 64); i != 0 {
level = slog.Level(i * -4)
}
}
return level
}
var ( var (
// Debug enabled additional debug information.
Debug = Bool("OLLAMA_DEBUG")
// FlashAttention enables the experimental flash attention feature. // FlashAttention enables the experimental flash attention feature.
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION") FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
// KvCacheType is the quantization type for the K/V cache. // KvCacheType is the quantization type for the K/V cache.
@ -170,6 +183,8 @@ var (
NewEngine = Bool("OLLAMA_NEW_ENGINE") NewEngine = Bool("OLLAMA_NEW_ENGINE")
// ContextLength sets the default context length // ContextLength sets the default context length
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096) ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
// Auth enables authentication between the Ollama client and server
UseAuth = Bool("OLLAMA_AUTH")
) )
func String(s string) func() string { func String(s string) func() string {
@ -209,8 +224,6 @@ var (
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0) MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable. // MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512) MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
) )
func Uint64(key string, defaultValue uint64) func() uint64 { func Uint64(key string, defaultValue uint64) func() uint64 {
@ -238,7 +251,7 @@ type EnvVar struct {
func AsMap() map[string]EnvVar { func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{ ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"}, "OLLAMA_DEBUG": {"OLLAMA_DEBUG", LogLevel(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"}, "OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"}, "OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"}, "OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},

View File

@ -1,11 +1,13 @@
package envconfig package envconfig
import ( import (
"log/slog"
"math" "math"
"testing" "testing"
"time" "time"
"github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/logutil"
) )
func TestHost(t *testing.T) { func TestHost(t *testing.T) {
@ -292,3 +294,34 @@ func TestContextLength(t *testing.T) {
}) })
} }
} }
func TestLogLevel(t *testing.T) {
cases := map[string]slog.Level{
// Default to INFO
"": slog.LevelInfo,
"false": slog.LevelInfo,
"f": slog.LevelInfo,
"0": slog.LevelInfo,
// True values enable Debug
"true": slog.LevelDebug,
"t": slog.LevelDebug,
// Positive values increase verbosity
"1": slog.LevelDebug,
"2": logutil.LevelTrace,
// Negative values decrease verbosity
"-1": slog.LevelWarn,
"-2": slog.LevelError,
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_DEBUG", k)
if i := LogLevel(); i != v {
t.Errorf("%s: expected %d, got %d", k, v, i)
}
})
}
}

View File

@ -15,6 +15,7 @@ import (
type GGML struct { type GGML struct {
container container
model model
Length int64
} }
type model interface { type model interface {
@ -170,6 +171,8 @@ func (kv KV) OllamaEngineRequired() bool {
"gemma3", "gemma3",
"mistral3", "mistral3",
"llama4", "llama4",
"mllama",
"qwen25vl",
}, kv.Architecture()) }, kv.Architecture())
} }
@ -429,12 +432,12 @@ func DetectContentType(b []byte) string {
// //
// It collects array values for arrays with a size less than or equal to // It collects array values for arrays with a size less than or equal to
// maxArraySize. If the maxArraySize is negative, all arrays are collected. // maxArraySize. If the maxArraySize is negative, all arrays are collected.
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) { func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
rs = bufioutil.NewBufferedSeeker(rs, 32<<10) rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
var magic uint32 var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil { if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
return nil, 0, err return nil, err
} }
var c container var c container
@ -444,24 +447,25 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
case FILE_MAGIC_GGUF_BE: case FILE_MAGIC_GGUF_BE:
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize} c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
default: default:
return nil, 0, errors.New("invalid file magic") return nil, errors.New("invalid file magic")
} }
model, err := c.Decode(rs) model, err := c.Decode(rs)
if err != nil { if err != nil {
return nil, 0, err return nil, err
} }
offset, err := rs.Seek(0, io.SeekCurrent) offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil { if err != nil {
return nil, 0, err return nil, err
} }
// final model type // final model type
return &GGML{ return &GGML{
container: c, container: c,
model: model, model: model,
}, offset, nil Length: offset,
}, nil
} }
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) { func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
@ -693,6 +697,20 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
graphSize = 4 * (imageSize*imageSize*numChannels + graphSize = 4 * (imageSize*imageSize*numChannels +
embeddingLength*patchSize + embeddingLength*patchSize +
numPatches*numPatches*headCount) numPatches*numPatches*headCount)
case "qwen25vl":
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
numPatches := maxPixels / (patchSize * patchSize)
graphSize = 4 * (maxPixels*numChannels + // Original image storage
// Normalized pixels
maxPixels*numChannels +
// Patches storage (numPatches * channels * patchSize^2)
numPatches*numChannels*patchSize*patchSize +
// Self-attention calculations
numPatches*numPatches*headCount +
// Additional buffer for processing
embeddingLength*numPatches)
case "llama4": case "llama4":
// vision graph is computed independently in the same schedule // vision graph is computed independently in the same schedule
// and is negligible compared to the worst case text graph // and is negligible compared to the worst case text graph

View File

@ -527,23 +527,17 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
return err return err
} }
keys := slices.Collect(maps.Keys(kv)) for _, key := range slices.Sorted(maps.Keys(kv)) {
slices.Sort(keys)
for _, key := range keys {
if err := ggufWriteKV(f, key, kv[key]); err != nil { if err := ggufWriteKV(f, key, kv[key]); err != nil {
return err return err
} }
} }
slices.SortStableFunc(ts, func(a, b *Tensor) int { slices.SortStableFunc(ts, func(a, b *Tensor) int {
if i, j := a.block(), b.block(); i < 0 && j > 0 { if i, j := a.block(), b.block(); i > 0 && j > 0 {
return 1
} else if i > 0 && j < 0 {
return -1
} else {
return cmp.Compare(i, j) return cmp.Compare(i, j)
} }
return cmp.Compare(a.Name, b.Name)
}) })
var s uint64 var s uint64

View File

@ -2,62 +2,82 @@ package ggml
import ( import (
"bytes" "bytes"
"math/rand/v2"
"os" "os"
"slices" "strings"
"testing" "testing"
"github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp"
) )
func TestWriteGGUF(t *testing.T) { func TestWriteGGUF(t *testing.T) {
w, err := os.CreateTemp(t.TempDir(), "*.bin") r := rand.New(rand.NewPCG(0, 0))
if err != nil { for range 8 {
t.Fatal(err) t.Run("shuffle", func(t *testing.T) {
} t.Parallel()
defer w.Close()
if err := WriteGGUF(w, KV{ ts := []*Tensor{
"general.alignment": uint32(16), {Name: "token_embd.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
}, []*Tensor{ {Name: "blk.0.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "test.0", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))}, {Name: "blk.1.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "test.1", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))}, {Name: "blk.2.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "test.2", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))}, {Name: "blk.3.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "test.3", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))}, {Name: "blk.4.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "test.4", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))}, {Name: "blk.5.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "test.5", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))}, {Name: "output_norm.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
}); err != nil { {Name: "output.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
t.Fatal(err) }
}
r, err := os.Open(w.Name()) r.Shuffle(len(ts), func(i, j int) {
if err != nil { ts[i], ts[j] = ts[j], ts[i]
t.Fatal(err) })
}
defer r.Close()
ff, _, err := Decode(r, 0) w, err := os.CreateTemp(t.TempDir(), strings.ReplaceAll(t.Name(), "/", "_")+"*.bin")
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
defer w.Close()
if diff := cmp.Diff(ff.KV(), KV{ if err := WriteGGUF(w, KV{
"general.alignment": uint32(16), "general.alignment": uint32(16),
"general.parameter_count": uint64(36), }, ts); err != nil {
}); diff != "" { t.Fatal(err)
t.Errorf("Mismatch (-want +got):\n%s", diff) }
}
if diff := cmp.Diff(ff.Tensors(), Tensors{ r, err := os.Open(w.Name())
Offset: 336, if err != nil {
items: []*Tensor{ t.Fatal(err)
{Name: "test.0", Offset: 0, Shape: []uint64{2, 3}}, }
{Name: "test.1", Offset: 32, Shape: []uint64{2, 3}}, defer r.Close()
{Name: "test.2", Offset: 64, Shape: []uint64{2, 3}},
{Name: "test.3", Offset: 96, Shape: []uint64{2, 3}}, ff, err := Decode(r, 0)
{Name: "test.4", Offset: 128, Shape: []uint64{2, 3}}, if err != nil {
{Name: "test.5", Offset: 160, Shape: []uint64{2, 3}}, t.Fatal(err)
}, }
}, cmp.AllowUnexported(Tensors{})); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff) if diff := cmp.Diff(KV{
"general.alignment": uint32(16),
"general.parameter_count": uint64(54),
}, ff.KV()); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(Tensors{
Offset: 608,
items: []*Tensor{
{Name: "blk.0.attn_norm.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.1.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},
{Name: "blk.2.attn_norm.weight", Offset: 64, Shape: []uint64{2, 3}},
{Name: "blk.3.attn_norm.weight", Offset: 96, Shape: []uint64{2, 3}},
{Name: "blk.4.attn_norm.weight", Offset: 128, Shape: []uint64{2, 3}},
{Name: "blk.5.attn_norm.weight", Offset: 160, Shape: []uint64{2, 3}},
{Name: "output.weight", Offset: 192, Shape: []uint64{3, 2}},
{Name: "output_norm.weight", Offset: 224, Shape: []uint64{3, 2}},
{Name: "token_embd.weight", Offset: 256, Shape: []uint64{2, 3}},
},
}, ff.Tensors(), cmp.AllowUnexported(Tensors{})); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
})
} }
} }

View File

@ -12,42 +12,42 @@ type FileType uint32
const ( const (
FileTypeF32 FileType = iota FileTypeF32 FileType = iota
FileTypeF16 FileTypeF16
FileTypeQ4_0 fileTypeQ4_0
FileTypeQ4_1 fileTypeQ4_1
fileTypeQ4_1_F16 // unused by GGML fileTypeQ4_1_F16 // unused by GGML
fileTypeQ4_2 // unused by GGML fileTypeQ4_2 // unused by GGML
fileTypeQ4_3 // unused by GGML fileTypeQ4_3 // unused by GGML
FileTypeQ8_0 FileTypeQ8_0
FileTypeQ5_0 fileTypeQ5_0
FileTypeQ5_1 fileTypeQ5_1
FileTypeQ2_K fileTypeQ2_K
FileTypeQ3_K_S fileTypeQ3_K_S
FileTypeQ3_K_M fileTypeQ3_K_M
FileTypeQ3_K_L fileTypeQ3_K_L
FileTypeQ4_K_S FileTypeQ4_K_S
FileTypeQ4_K_M FileTypeQ4_K_M
FileTypeQ5_K_S fileTypeQ5_K_S
FileTypeQ5_K_M fileTypeQ5_K_M
FileTypeQ6_K fileTypeQ6_K
fileTypeIQ2_XXS // not supported by ollama fileTypeIQ2_XXS
fileTypeIQ2_XS // not supported by ollama fileTypeIQ2_XS
FileTypeQ2_K_S fileTypeQ2_K_S
fileTypeIQ3_XS // not supported by ollama fileTypeIQ3_XS
fileTypeIQ3_XXS // not supported by ollama fileTypeIQ3_XXS
fileTypeIQ1_S // not supported by ollama fileTypeIQ1_S
fileTypeIQ4_NL // not supported by ollama fileTypeIQ4_NL
fileTypeIQ3_S // not supported by ollama fileTypeIQ3_S
fileTypeIQ3_M // not supported by ollama fileTypeIQ3_M
fileTypeIQ2_S // not supported by ollama fileTypeIQ2_S
fileTypeIQ2_M // not supported by ollama fileTypeIQ2_M
fileTypeIQ4_XS // not supported by ollama fileTypeIQ4_XS
fileTypeIQ1_M // not supported by ollama fileTypeIQ1_M
FileTypeBF16 FileTypeBF16
fileTypeQ4_0_4_4 // unused by GGML fileTypeQ4_0_4_4 // unused by GGML
fileTypeQ4_0_4_8 // unused by GGML fileTypeQ4_0_4_8 // unused by GGML
fileTypeQ4_0_8_8 // unused by GGML fileTypeQ4_0_8_8 // unused by GGML
fileTypeTQ1_0 // not supported by ollama fileTypeTQ1_0
fileTypeTQ2_0 // not supported by ollama fileTypeTQ2_0
FileTypeUnknown = 1024 FileTypeUnknown = 1024
) )
@ -60,36 +60,12 @@ func ParseFileType(s string) (FileType, error) {
return FileTypeF32, nil return FileTypeF32, nil
case "F16": case "F16":
return FileTypeF16, nil return FileTypeF16, nil
case "Q4_0":
return FileTypeQ4_0, nil
case "Q4_1":
return FileTypeQ4_1, nil
case "Q8_0": case "Q8_0":
return FileTypeQ8_0, nil return FileTypeQ8_0, nil
case "Q5_0":
return FileTypeQ5_0, nil
case "Q5_1":
return FileTypeQ5_1, nil
case "Q2_K":
return FileTypeQ2_K, nil
case "Q3_K_S":
return FileTypeQ3_K_S, nil
case "Q3_K_M":
return FileTypeQ3_K_M, nil
case "Q3_K_L":
return FileTypeQ3_K_L, nil
case "Q4_K_S": case "Q4_K_S":
return FileTypeQ4_K_S, nil return FileTypeQ4_K_S, nil
case "Q4_K_M", "Q4_K": case "Q4_K_M", "Q4_K":
return FileTypeQ4_K_M, nil return FileTypeQ4_K_M, nil
case "Q5_K_S":
return FileTypeQ5_K_S, nil
case "Q5_K_M", "Q5_K":
return FileTypeQ5_K_M, nil
case "Q6_K":
return FileTypeQ6_K, nil
case "Q2_K_S":
return FileTypeQ2_K_S, nil
case "BF16": case "BF16":
return FileTypeBF16, nil return FileTypeBF16, nil
default: default:
@ -111,40 +87,41 @@ func ParseFileType(s string) (FileType, error) {
} }
func (t FileType) String() string { func (t FileType) String() string {
// Note: this routine will return a broader set of file types for existing models
switch t { switch t {
case FileTypeF32: case FileTypeF32:
return "F32" return "F32"
case FileTypeF16: case FileTypeF16:
return "F16" return "F16"
case FileTypeQ4_0: case fileTypeQ4_0:
return "Q4_0" return "Q4_0"
case FileTypeQ4_1: case fileTypeQ4_1:
return "Q4_1" return "Q4_1"
case FileTypeQ8_0: case FileTypeQ8_0:
return "Q8_0" return "Q8_0"
case FileTypeQ5_0: case fileTypeQ5_0:
return "Q5_0" return "Q5_0"
case FileTypeQ5_1: case fileTypeQ5_1:
return "Q5_1" return "Q5_1"
case FileTypeQ2_K: case fileTypeQ2_K:
return "Q2_K" return "Q2_K"
case FileTypeQ3_K_S: case fileTypeQ3_K_S:
return "Q3_K_S" return "Q3_K_S"
case FileTypeQ3_K_M: case fileTypeQ3_K_M:
return "Q3_K_M" return "Q3_K_M"
case FileTypeQ3_K_L: case fileTypeQ3_K_L:
return "Q3_K_L" return "Q3_K_L"
case FileTypeQ4_K_S: case FileTypeQ4_K_S:
return "Q4_K_S" return "Q4_K_S"
case FileTypeQ4_K_M: case FileTypeQ4_K_M:
return "Q4_K_M" return "Q4_K_M"
case FileTypeQ5_K_S: case fileTypeQ5_K_S:
return "Q5_K_S" return "Q5_K_S"
case FileTypeQ5_K_M: case fileTypeQ5_K_M:
return "Q5_K_M" return "Q5_K_M"
case FileTypeQ6_K: case fileTypeQ6_K:
return "Q6_K" return "Q6_K"
case FileTypeQ2_K_S: case fileTypeQ2_K_S:
return "Q2_K_S" return "Q2_K_S"
case FileTypeBF16: case FileTypeBF16:
return "BF16" return "BF16"
@ -163,35 +140,35 @@ func (ftype FileType) ToTensorType() TensorType {
return TensorTypeF32 return TensorTypeF32
case FileTypeF16: case FileTypeF16:
return TensorTypeF16 return TensorTypeF16
case FileTypeQ4_0: case fileTypeQ4_0:
return TensorTypeQ4_0 return TensorTypeQ4_0
case FileTypeQ4_1: case fileTypeQ4_1:
return TensorTypeQ4_1 return TensorTypeQ4_1
case FileTypeQ8_0: case FileTypeQ8_0:
return TensorTypeQ8_0 return TensorTypeQ8_0
case FileTypeQ5_0: case fileTypeQ5_0:
return TensorTypeQ5_0 return TensorTypeQ5_0
case FileTypeQ5_1: case fileTypeQ5_1:
return TensorTypeQ5_1 return TensorTypeQ5_1
case FileTypeQ2_K: case fileTypeQ2_K:
return TensorTypeQ2_K return TensorTypeQ2_K
case FileTypeQ3_K_S: case fileTypeQ3_K_S:
return TensorTypeQ3_K return TensorTypeQ3_K
case FileTypeQ3_K_M: case fileTypeQ3_K_M:
return TensorTypeQ3_K return TensorTypeQ3_K
case FileTypeQ3_K_L: case fileTypeQ3_K_L:
return TensorTypeQ3_K return TensorTypeQ3_K
case FileTypeQ4_K_S: case FileTypeQ4_K_S:
return TensorTypeQ4_K return TensorTypeQ4_K
case FileTypeQ4_K_M: case FileTypeQ4_K_M:
return TensorTypeQ4_K return TensorTypeQ4_K
case FileTypeQ5_K_S: case fileTypeQ5_K_S:
return TensorTypeQ5_K return TensorTypeQ5_K
case FileTypeQ5_K_M: case fileTypeQ5_K_M:
return TensorTypeQ5_K return TensorTypeQ5_K
case FileTypeQ6_K: case fileTypeQ6_K:
return TensorTypeQ6_K return TensorTypeQ6_K
case FileTypeQ2_K_S: case fileTypeQ2_K_S:
return TensorTypeQ2_K return TensorTypeQ2_K
case FileTypeBF16: case FileTypeBF16:
return TensorTypeBF16 return TensorTypeBF16

347
fs/gguf/gguf.go Normal file
View File

@ -0,0 +1,347 @@
package gguf
import (
"bytes"
"cmp"
"encoding/binary"
"errors"
"fmt"
"io"
"iter"
"os"
"slices"
"strings"
)
const (
typeUint8 uint32 = iota
typeInt8
typeUint16
typeInt16
typeUint32
typeInt32
typeFloat32
typeBool
typeString
typeArray
typeUint64
typeInt64
typeFloat64
)
var ErrUnsupported = errors.New("unsupported")
type File struct {
Magic [4]byte
Version uint32
keyValues *lazy[KeyValue]
tensors *lazy[TensorInfo]
offset int64
file *os.File
reader *bufferedReader
bts []byte
}
func Open(path string) (f *File, err error) {
f = &File{bts: make([]byte, 4096)}
f.file, err = os.Open(path)
if err != nil {
return nil, err
}
f.reader = newBufferedReader(f.file, 32<<10)
if err := binary.Read(f.reader, binary.LittleEndian, &f.Magic); err != nil {
return nil, err
}
if bytes.Equal(f.Magic[:], []byte("gguf")) {
return nil, fmt.Errorf("%w file type %v", ErrUnsupported, f.Magic)
}
if err := binary.Read(f.reader, binary.LittleEndian, &f.Version); err != nil {
return nil, err
}
if f.Version < 2 {
return nil, fmt.Errorf("%w version %v", ErrUnsupported, f.Version)
}
f.tensors, err = newLazy(f, f.readTensor)
if err != nil {
return nil, err
}
f.tensors.successFunc = func() error {
offset := f.reader.offset
alignment := cmp.Or(f.KeyValue("general.alignment").Int(), 32)
f.offset = offset + (alignment-offset%alignment)%alignment
return nil
}
f.keyValues, err = newLazy(f, f.readKeyValue)
if err != nil {
return nil, err
}
return f, nil
}
func (f *File) readTensor() (TensorInfo, error) {
name, err := readString(f)
if err != nil {
return TensorInfo{}, err
}
dims, err := read[uint32](f)
if err != nil {
return TensorInfo{}, err
}
shape := make([]uint64, dims)
for i := range dims {
shape[i], err = read[uint64](f)
if err != nil {
return TensorInfo{}, err
}
}
type_, err := read[uint32](f)
if err != nil {
return TensorInfo{}, err
}
offset, err := read[uint64](f)
if err != nil {
return TensorInfo{}, err
}
return TensorInfo{
Name: name,
Offset: offset,
Shape: shape,
Type: TensorType(type_),
}, nil
}
func (f *File) readKeyValue() (KeyValue, error) {
key, err := readString(f)
if err != nil {
return KeyValue{}, err
}
t, err := read[uint32](f)
if err != nil {
return KeyValue{}, err
}
value, err := func() (any, error) {
switch t {
case typeUint8:
return read[uint8](f)
case typeInt8:
return read[int8](f)
case typeUint16:
return read[uint16](f)
case typeInt16:
return read[int16](f)
case typeUint32:
return read[uint32](f)
case typeInt32:
return read[int32](f)
case typeUint64:
return read[uint64](f)
case typeInt64:
return read[int64](f)
case typeFloat32:
return read[float32](f)
case typeFloat64:
return read[float64](f)
case typeBool:
return read[bool](f)
case typeString:
return readString(f)
case typeArray:
return readArray(f)
default:
return nil, fmt.Errorf("%w type %d", ErrUnsupported, t)
}
}()
if err != nil {
return KeyValue{}, err
}
return KeyValue{
Key: key,
Value: Value{value},
}, nil
}
func read[T any](f *File) (t T, err error) {
err = binary.Read(f.reader, binary.LittleEndian, &t)
return t, err
}
func readString(f *File) (string, error) {
n, err := read[uint64](f)
if err != nil {
return "", err
}
if int(n) > len(f.bts) {
f.bts = make([]byte, n)
}
bts := f.bts[:n]
if _, err := io.ReadFull(f.reader, bts); err != nil {
return "", err
}
defer clear(bts)
return string(bts), nil
}
func readArray(f *File) (any, error) {
t, err := read[uint32](f)
if err != nil {
return nil, err
}
n, err := read[uint64](f)
if err != nil {
return nil, err
}
switch t {
case typeUint8:
return readArrayData[uint8](f, n)
case typeInt8:
return readArrayData[int8](f, n)
case typeUint16:
return readArrayData[uint16](f, n)
case typeInt16:
return readArrayData[int16](f, n)
case typeUint32:
return readArrayData[uint32](f, n)
case typeInt32:
return readArrayData[int32](f, n)
case typeUint64:
return readArrayData[uint64](f, n)
case typeInt64:
return readArrayData[int64](f, n)
case typeFloat32:
return readArrayData[float32](f, n)
case typeFloat64:
return readArrayData[float64](f, n)
case typeBool:
return readArrayData[bool](f, n)
case typeString:
return readArrayString(f, n)
default:
return nil, fmt.Errorf("%w type %d", ErrUnsupported, t)
}
}
func readArrayData[T any](f *File, n uint64) (s []T, err error) {
s = make([]T, n)
for i := range n {
e, err := read[T](f)
if err != nil {
return nil, err
}
s[i] = e
}
return s, nil
}
func readArrayString(f *File, n uint64) (s []string, err error) {
s = make([]string, n)
for i := range n {
e, err := readString(f)
if err != nil {
return nil, err
}
s[i] = e
}
return s, nil
}
func (f *File) Close() error {
f.keyValues.stop()
f.tensors.stop()
return f.file.Close()
}
func (f *File) KeyValue(key string) KeyValue {
if !strings.HasPrefix(key, "general.") && !strings.HasPrefix(key, "tokenizer.") {
key = f.KeyValue("general.architecture").String() + "." + key
}
if index := slices.IndexFunc(f.keyValues.values, func(kv KeyValue) bool {
return kv.Key == key
}); index >= 0 {
return f.keyValues.values[index]
}
for keyValue, ok := f.keyValues.next(); ok; keyValue, ok = f.keyValues.next() {
if keyValue.Key == key {
return keyValue
}
}
return KeyValue{}
}
func (f *File) NumKeyValues() int {
return int(f.keyValues.count)
}
func (f *File) KeyValues() iter.Seq2[int, KeyValue] {
return f.keyValues.All()
}
func (f *File) TensorInfo(name string) TensorInfo {
if index := slices.IndexFunc(f.tensors.values, func(t TensorInfo) bool {
return t.Name == name
}); index >= 0 {
return f.tensors.values[index]
}
// fast-forward through key values if we haven't already
_ = f.keyValues.rest()
for tensor, ok := f.tensors.next(); ok; tensor, ok = f.tensors.next() {
if tensor.Name == name {
return tensor
}
}
return TensorInfo{}
}
func (f *File) NumTensors() int {
return int(f.tensors.count)
}
func (f *File) TensorInfos() iter.Seq2[int, TensorInfo] {
// fast forward through key values if we haven't already
f.keyValues.rest()
return f.tensors.All()
}
func (f *File) TensorReader(name string) (TensorInfo, io.Reader, error) {
t := f.TensorInfo(name)
if t.NumBytes() == 0 {
return TensorInfo{}, nil, fmt.Errorf("tensor %s not found", name)
}
// fast forward through tensor info if we haven't already
_ = f.tensors.rest()
return t, io.NewSectionReader(f.file, f.offset+int64(t.Offset), t.NumBytes()), nil
}

249
fs/gguf/gguf_test.go Normal file
View File

@ -0,0 +1,249 @@
package gguf_test
import (
"bytes"
"os"
"strconv"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/fs/gguf"
)
func createBinFile(tb testing.TB) string {
tb.Helper()
f, err := os.CreateTemp(tb.TempDir(), "")
if err != nil {
tb.Fatal(err)
}
defer f.Close()
kv := ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(8),
"llama.embedding_length": uint32(3),
"llama.attention.head_count": uint32(2),
"llama.attention.head_count_kv": uint32(2),
"llama.attention.key_length": uint32(3),
"llama.rope.dimension_count": uint32(4),
"llama.rope.freq_base": float32(10000.0),
"llama.rope.freq_scale": float32(1.0),
"llama.attention.layer_norm_rms_epsilon": float32(1e-6),
"tokenizer.ggml.eos_token_id": uint32(0),
"tokenizer.ggml.eos_token_ids": []int32{1, 2, 3},
"tokenizer.ggml.tokens": []string{"hello", "world"},
"tokenizer.ggml.scores": []float32{0, 1},
}
tensors := []*ggml.Tensor{
{
Name: "token_embd.weight",
Kind: 0,
Shape: []uint64{2, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*2*3)),
},
{
Name: "output.weight",
Kind: 0,
Shape: []uint64{3, 2},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*2)),
},
}
for i := range 8 {
tensors = append(tensors, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_q.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
}, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_k.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
}, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_v.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
}, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_output.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
})
}
if err := ggml.WriteGGUF(f, kv, tensors); err != nil {
tb.Fatal(err)
}
return f.Name()
}
func TestRead(t *testing.T) {
f, err := gguf.Open(createBinFile(t))
if err != nil {
t.Fatal(err)
}
defer f.Close()
if got := f.KeyValue("does.not.exist").Valid(); got {
t.Errorf(`KeyValue("does.not.exist").Exists() = %v, want false`, got)
}
if got := f.KeyValue("general.architecture").String(); got != "llama" {
t.Errorf(`KeyValue("general.architecture").String() = %q, want %q`, got, "llama")
}
if got := f.TensorInfo("token_embd.weight"); got.Name != "token_embd.weight" {
t.Errorf(`TensorInfo("token_embd.weight").Name = %q, want %q`, got.Name, "token_embd.weight")
} else if diff := cmp.Diff(got.Shape, []uint64{2, 3}); diff != "" {
t.Errorf(`TensorInfo("token_embd.weight").Shape mismatch (-got +want):\n%s`, diff)
} else if got.Type != gguf.TensorTypeF32 {
t.Errorf(`TensorInfo("token_embd.weight").Type = %d, want %d`, got.Type, gguf.TensorTypeF32)
}
if got := f.KeyValue("block_count").Uint(); got != 8 {
t.Errorf(`KeyValue("block_count").Uint() = %d, want %d`, got, 8)
}
if diff := cmp.Diff(f.KeyValue("tokenizer.ggml.tokens").Strings(), []string{"hello", "world"}); diff != "" {
t.Errorf("KeyValue(\"tokenizer.ggml.tokens\").Strings() mismatch (-got +want):\n%s", diff)
}
if diff := cmp.Diff(f.KeyValue("tokenizer.ggml.scores").Floats(), []float64{0, 1}); diff != "" {
t.Errorf("KeyValue(\"tokenizer.ggml.scores\").Ints() mismatch (-got +want):\n%s", diff)
}
var kvs []string
for _, kv := range f.KeyValues() {
if !kv.Valid() {
t.Error("found invalid key-value pair:", kv)
}
kvs = append(kvs, kv.Key)
}
if len(kvs) != f.NumKeyValues() {
t.Errorf("iterated key count = %d, want %d", len(kvs), f.NumKeyValues())
}
if diff := cmp.Diff(kvs, []string{
"general.architecture",
"llama.block_count",
"llama.embedding_length",
"llama.attention.head_count",
"llama.attention.head_count_kv",
"llama.attention.key_length",
"llama.rope.dimension_count",
"llama.rope.freq_base",
"llama.rope.freq_scale",
"llama.attention.layer_norm_rms_epsilon",
"tokenizer.ggml.eos_token_id",
"tokenizer.ggml.eos_token_ids",
"tokenizer.ggml.tokens",
"tokenizer.ggml.scores",
}, cmpopts.SortSlices(strings.Compare)); diff != "" {
t.Errorf("KeyValues() mismatch (-got +want):\n%s", diff)
}
var tis []string
for _, ti := range f.TensorInfos() {
if !ti.Valid() {
t.Error("found invalid tensor info:", ti)
}
tis = append(tis, ti.Name)
}
if len(tis) != f.NumTensors() {
t.Errorf("iterated tensor count = %d, want %d", len(tis), f.NumTensors())
}
if diff := cmp.Diff(tis, []string{
"token_embd.weight",
"output.weight",
"blk.0.attn_q.weight",
"blk.0.attn_k.weight",
"blk.0.attn_v.weight",
"blk.0.attn_output.weight",
"blk.1.attn_q.weight",
"blk.1.attn_k.weight",
"blk.1.attn_v.weight",
"blk.1.attn_output.weight",
"blk.2.attn_q.weight",
"blk.2.attn_k.weight",
"blk.2.attn_v.weight",
"blk.2.attn_output.weight",
"blk.3.attn_q.weight",
"blk.3.attn_k.weight",
"blk.3.attn_v.weight",
"blk.3.attn_output.weight",
"blk.4.attn_q.weight",
"blk.4.attn_k.weight",
"blk.4.attn_v.weight",
"blk.4.attn_output.weight",
"blk.5.attn_q.weight",
"blk.5.attn_k.weight",
"blk.5.attn_v.weight",
"blk.5.attn_output.weight",
"blk.6.attn_q.weight",
"blk.6.attn_k.weight",
"blk.6.attn_v.weight",
"blk.6.attn_output.weight",
"blk.7.attn_q.weight",
"blk.7.attn_k.weight",
"blk.7.attn_v.weight",
"blk.7.attn_output.weight",
}, cmpopts.SortSlices(strings.Compare)); diff != "" {
t.Errorf("TensorInfos() mismatch (-got +want):\n%s", diff)
}
ti, r, err := f.TensorReader("output.weight")
if err != nil {
t.Fatalf(`TensorReader("output.weight") error: %v`, err)
}
if ti.Name != "output.weight" {
t.Errorf(`TensorReader("output.weight").Name = %q, want %q`, ti.Name, "output.weight")
} else if diff := cmp.Diff(ti.Shape, []uint64{3, 2}); diff != "" {
t.Errorf(`TensorReader("output.weight").Shape mismatch (-got +want):\n%s`, diff)
} else if ti.Type != gguf.TensorTypeF32 {
t.Errorf(`TensorReader("output.weight").Type = %d, want %d`, ti.Type, gguf.TensorTypeF32)
}
var b bytes.Buffer
if _, err := b.ReadFrom(r); err != nil {
t.Fatalf(`ReadFrom TensorReader("output.weight") error: %v`, err)
}
if b.Len() != int(ti.NumBytes()) {
t.Errorf(`ReadFrom TensorReader("output.weight") length = %d, want %d`, b.Len(), ti.NumBytes())
}
}
func BenchmarkRead(b *testing.B) {
b.ReportAllocs()
p := createBinFile(b)
for b.Loop() {
f, err := gguf.Open(p)
if err != nil {
b.Fatal(err)
}
if got := f.KeyValue("general.architecture").String(); got != "llama" {
b.Errorf("got = %q, want %q", got, "llama")
}
// Iterate through some tensors
for range f.TensorInfos() {
}
f.Close()
}
}

90
fs/gguf/keyvalue.go Normal file
View File

@ -0,0 +1,90 @@
package gguf
import (
"reflect"
"slices"
)
type KeyValue struct {
Key string
Value
}
func (kv KeyValue) Valid() bool {
return kv.Key != "" && kv.Value.value != nil
}
type Value struct {
value any
}
func value[T any](v Value, kinds ...reflect.Kind) (t T) {
vv := reflect.ValueOf(v.value)
if slices.Contains(kinds, vv.Kind()) {
t = vv.Convert(reflect.TypeOf(t)).Interface().(T)
}
return
}
func values[T any](v Value, kinds ...reflect.Kind) (ts []T) {
switch vv := reflect.ValueOf(v.value); vv.Kind() {
case reflect.Slice:
if slices.Contains(kinds, vv.Type().Elem().Kind()) {
ts = make([]T, vv.Len())
for i := range vv.Len() {
ts[i] = vv.Index(i).Convert(reflect.TypeOf(ts[i])).Interface().(T)
}
}
}
return
}
// Int returns Value as a signed integer. If it is not a signed integer, it returns 0.
func (v Value) Int() int64 {
return value[int64](v, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64)
}
// Ints returns Value as a signed integer slice. If it is not a signed integer slice, it returns nil.
func (v Value) Ints() (i64s []int64) {
return values[int64](v, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64)
}
// Uint converts an unsigned integer value to uint64. If the value is not a unsigned integer, it returns 0.
func (v Value) Uint() uint64 {
return value[uint64](v, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64)
}
// Uints returns Value as a unsigned integer slice. If it is not a unsigned integer slice, it returns nil.
func (v Value) Uints() (u64s []uint64) {
return values[uint64](v, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64)
}
// Float returns Value as a float. If it is not a float, it returns 0.
func (v Value) Float() float64 {
return value[float64](v, reflect.Float32, reflect.Float64)
}
// Floats returns Value as a float slice. If it is not a float slice, it returns nil.
func (v Value) Floats() (f64s []float64) {
return values[float64](v, reflect.Float32, reflect.Float64)
}
// Bool returns Value as a boolean. If it is not a boolean, it returns false.
func (v Value) Bool() bool {
return value[bool](v, reflect.Bool)
}
// Bools returns Value as a boolean slice. If it is not a boolean slice, it returns nil.
func (v Value) Bools() (bools []bool) {
return values[bool](v, reflect.Bool)
}
// String returns Value as a string. If it is not a string, it returns an empty string.
func (v Value) String() string {
return value[string](v, reflect.String)
}
// Strings returns Value as a string slice. If it is not a string slice, it returns nil.
func (v Value) Strings() (strings []string) {
return values[string](v, reflect.String)
}

208
fs/gguf/keyvalue_test.go Normal file
View File

@ -0,0 +1,208 @@
package gguf
import (
"testing"
"github.com/google/go-cmp/cmp"
)
func split(name string, values map[string][]any) (matched []any, unmatched []any) {
for key, value := range values {
if key == name {
matched = value
} else {
unmatched = append(unmatched, value...)
}
}
return
}
func TestValue(t *testing.T) {
values := map[string][]any{
"int64": {int(42), int8(42), int16(42), int32(42), int64(42)},
"uint64": {uint(42), uint8(42), uint16(42), uint32(42), uint64(42)},
"float64": {float32(42), float64(42)},
"string": {"42", "hello"},
"bool": {true, false},
}
t.Run("int64", func(t *testing.T) {
matched, unmatched := split("int64", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if i64 := kv.Int(); i64 != 42 {
t.Errorf("expected 42, got %d", i64)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if i64 := kv.Int(); i64 != 0 {
t.Errorf("expected 42, got %d", i64)
}
}
})
t.Run("uint64", func(t *testing.T) {
matched, unmatched := split("uint64", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if u64 := kv.Uint(); u64 != 42 {
t.Errorf("expected 42, got %d", u64)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if u64 := kv.Uint(); u64 != 0 {
t.Errorf("expected 42, got %d", u64)
}
}
})
t.Run("float64", func(t *testing.T) {
matched, unmatched := split("float64", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if f64 := kv.Float(); f64 != 42 {
t.Errorf("expected 42, got %f", f64)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if f64 := kv.Float(); f64 != 0 {
t.Errorf("expected 42, got %f", f64)
}
}
})
t.Run("string", func(t *testing.T) {
matched, unmatched := split("string", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if s := kv.String(); s != v {
t.Errorf("expected 42, got %s", s)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if s := kv.String(); s != "" {
t.Errorf("expected 42, got %s", s)
}
}
})
t.Run("bool", func(t *testing.T) {
matched, unmatched := split("bool", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if b := kv.Bool(); b != v {
t.Errorf("expected true, got %v", b)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if b := kv.Bool(); b != false {
t.Errorf("expected false, got %v", b)
}
}
})
}
func TestValues(t *testing.T) {
values := map[string][]any{
"int64s": {[]int{42}, []int8{42}, []int16{42}, []int32{42}, []int64{42}},
"uint64s": {[]uint{42}, []uint8{42}, []uint16{42}, []uint32{42}, []uint64{42}},
"float64s": {[]float32{42}, []float64{42}},
"strings": {[]string{"42"}, []string{"hello"}},
"bools": {[]bool{true}, []bool{false}},
}
t.Run("int64s", func(t *testing.T) {
matched, unmatched := split("int64s", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Ints(), []int64{42}); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if i64s := kv.Ints(); i64s != nil {
t.Errorf("expected nil, got %v", i64s)
}
}
})
t.Run("uint64s", func(t *testing.T) {
matched, unmatched := split("uint64s", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Uints(), []uint64{42}); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if u64s := kv.Uints(); u64s != nil {
t.Errorf("expected nil, got %v", u64s)
}
}
})
t.Run("float64s", func(t *testing.T) {
matched, unmatched := split("float64s", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Floats(), []float64{42}); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if f64s := kv.Floats(); f64s != nil {
t.Errorf("expected nil, got %v", f64s)
}
}
})
t.Run("strings", func(t *testing.T) {
matched, unmatched := split("strings", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Strings(), v); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if s := kv.Strings(); s != nil {
t.Errorf("expected nil, got %v", s)
}
}
})
t.Run("bools", func(t *testing.T) {
matched, unmatched := split("bools", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Bools(), v); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if b := kv.Bools(); b != nil {
t.Errorf("expected nil, got %v", b)
}
}
})
}

89
fs/gguf/lazy.go Normal file
View File

@ -0,0 +1,89 @@
package gguf
import (
"encoding/binary"
"iter"
"log/slog"
)
type lazy[T any] struct {
count uint64
next func() (T, bool)
stop func()
values []T
// successFunc is called when all values have been successfully read.
successFunc func() error
}
func newLazy[T any](f *File, fn func() (T, error)) (*lazy[T], error) {
it := lazy[T]{}
if err := binary.Read(f.reader, binary.LittleEndian, &it.count); err != nil {
return nil, err
}
it.values = make([]T, 0)
it.next, it.stop = iter.Pull(func(yield func(T) bool) {
for i := range it.count {
t, err := fn()
if err != nil {
slog.Error("error reading tensor", "index", i, "error", err)
return
}
it.values = append(it.values, t)
if !yield(t) {
break
}
}
if it.successFunc != nil {
it.successFunc()
}
})
return &it, nil
}
func (g *lazy[T]) Values() iter.Seq[T] {
return func(yield func(T) bool) {
for _, v := range g.All() {
if !yield(v) {
break
}
}
}
}
func (g *lazy[T]) All() iter.Seq2[int, T] {
return func(yield func(int, T) bool) {
for i := range int(g.count) {
if i < len(g.values) {
if !yield(i, g.values[i]) {
break
}
} else {
t, ok := g.next()
if !ok {
break
}
if !yield(i, t) {
break
}
}
}
}
}
func (g *lazy[T]) rest() (collected bool) {
for {
_, ok := g.next()
collected = collected || ok
if !ok {
break
}
}
return collected
}

23
fs/gguf/reader.go Normal file
View File

@ -0,0 +1,23 @@
package gguf
import (
"bufio"
"io"
)
type bufferedReader struct {
offset int64
*bufio.Reader
}
func newBufferedReader(rs io.ReadSeeker, size int) *bufferedReader {
return &bufferedReader{
Reader: bufio.NewReaderSize(rs, size),
}
}
func (rs *bufferedReader) Read(p []byte) (n int, err error) {
n, err = rs.Reader.Read(p)
rs.offset += int64(n)
return n, err
}

288
fs/gguf/tensor.go Normal file
View File

@ -0,0 +1,288 @@
package gguf
import (
"log/slog"
"strings"
)
type TensorInfo struct {
Name string
Offset uint64
Shape []uint64
Type TensorType
}
func (ti TensorInfo) Valid() bool {
return ti.Name != "" && ti.NumBytes() > 0
}
func (ti TensorInfo) NumValues() int64 {
var numItems int64 = 1
for _, dim := range ti.Shape {
numItems *= int64(dim)
}
return numItems
}
// NumBytes returns the number of bytes in the tensor.
func (ti TensorInfo) NumBytes() int64 {
return int64(float64(ti.NumValues()) * ti.Type.NumBytes())
}
func (ti TensorInfo) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", ti.Name),
slog.Int64("offset", int64(ti.Offset)),
slog.Any("shape", ti.Shape),
slog.Int64("num_values", ti.NumValues()),
slog.Int64("num_bytes", ti.NumBytes()),
slog.Any("type", ti.Type),
)
}
type TensorType uint32
const (
TensorTypeF32 TensorType = iota
TensorTypeF16
TensorTypeQ4_0
TensorTypeQ4_1
// unexported // unused in gguf
tensorTypeQ4_2
tensorTypeQ4_3
TensorTypeQ5_0
TensorTypeQ5_1
TensorTypeQ8_0
TensorTypeQ8_1
TensorTypeQ2_K
TensorTypeQ3_K
TensorTypeQ4_K
TensorTypeQ5_K
TensorTypeQ6_K
TensorTypeQ8_K
// unexported // unquantizable by ollama
tensorTypeIQ2_XXS
tensorTypeIQ2_XS
tensorTypeIQ3_XXS
tensorTypeIQ1_S
tensorTypeIQ4_NL
tensorTypeIQ3_S
tensorTypeIQ2_S
tensorTypeIQ4_XS
TensorTypeI8
TensorTypeI16
TensorTypeI32
TensorTypeI64
TensorTypeF64
// unexported // unquantizable by ollama
tensorTypeIQ1_M
TensorTypeBF16
// unexported // unused in gguf
tensorTypeQ4_0_4_4
tensorTypeQ4_0_4_8
tensorTypeQ4_0_8_8
// unexported // unquantizable by ollama
tensorTypeTQ1_0
tensorTypeTQ2_0
// unexported // unused in gguf
tensorTypeIQ4_NL_4_4
tensorTypeIQ4_NL_4_8
tensorTypeIQ4_NL_8_8
)
func (tt TensorType) NumBytes() float64 {
return float64(tt.typeSize()) / float64(tt.blockSize())
}
func (tt TensorType) typeSize() int64 {
switch tt {
case TensorTypeF32:
return 4
case TensorTypeF16:
return 2
case TensorTypeQ4_0:
return 2 + tt.blockSize()/2
case TensorTypeQ4_1:
return 2 + 2 + tt.blockSize()/2
case TensorTypeQ5_0:
return 2 + 4 + tt.blockSize()/2
case TensorTypeQ5_1:
return 2 + 2 + 4 + tt.blockSize()/2
case TensorTypeQ8_0:
return 2 + tt.blockSize()
case TensorTypeQ8_1:
return 2 + 2 + tt.blockSize()
case TensorTypeQ2_K:
return tt.blockSize()/16 + tt.blockSize()/4 + 2 + 2
case TensorTypeQ3_K:
return tt.blockSize()/8 + tt.blockSize()/4 + 12 + 2
case TensorTypeQ4_K:
return 2 + 2 + 12 + tt.blockSize()/2
case TensorTypeQ5_K:
return 2 + 2 + 12 + tt.blockSize()/8 + tt.blockSize()/2
case TensorTypeQ6_K:
return tt.blockSize()/2 + tt.blockSize()/4 + tt.blockSize()/16 + 2
case TensorTypeQ8_K:
return 4 + tt.blockSize() + 2*tt.blockSize()/16
case tensorTypeIQ2_XXS:
return 2 + 2*tt.blockSize()/8
case tensorTypeIQ2_XS:
return 2 + 2*tt.blockSize()/8 + tt.blockSize()/32
case tensorTypeIQ3_XXS:
return 2 + tt.blockSize()/4 + tt.blockSize()/8
case tensorTypeIQ1_S:
return 2 + tt.blockSize()/8 + tt.blockSize()/16
case tensorTypeIQ4_NL:
return 2 + tt.blockSize()/2
case tensorTypeIQ3_S:
return 2 + tt.blockSize()/4 + tt.blockSize()/8 + tt.blockSize()/32 + 4
case tensorTypeIQ2_S:
return 2 + tt.blockSize()/4 + tt.blockSize()/16
case tensorTypeIQ4_XS:
return 2 + 2 + tt.blockSize()/2 + tt.blockSize()/64
case TensorTypeI8:
return 1
case TensorTypeI16:
return 2
case TensorTypeI32:
return 4
case TensorTypeI64:
return 8
case TensorTypeF64:
return 8
case tensorTypeIQ1_M:
return tt.blockSize()/8 + tt.blockSize()/16 + tt.blockSize()/32
case TensorTypeBF16:
return 2
default:
return 0
}
}
func (tt TensorType) blockSize() int64 {
switch tt {
case TensorTypeF32,
TensorTypeF16,
TensorTypeI8,
TensorTypeI16,
TensorTypeI32,
TensorTypeI64,
TensorTypeF64,
TensorTypeBF16:
return 1
case TensorTypeQ4_0,
TensorTypeQ4_1,
TensorTypeQ5_0,
TensorTypeQ5_1,
TensorTypeQ8_0,
TensorTypeQ8_1,
tensorTypeIQ4_NL:
return 32
default:
return 256
}
}
func (tt TensorType) String() string {
switch tt {
case TensorTypeF32:
return "f32"
case TensorTypeF16:
return "f16"
case TensorTypeQ4_0:
return "q4_0"
case TensorTypeQ4_1:
return "q4_1"
case tensorTypeQ4_2:
return "q4_2"
case tensorTypeQ4_3:
return "q4_3"
case TensorTypeQ5_0:
return "q5_0"
case TensorTypeQ5_1:
return "q5_1"
case TensorTypeQ8_0:
return "q8_0"
case TensorTypeQ8_1:
return "q8_1"
case TensorTypeQ2_K:
return "q2_k"
case TensorTypeQ3_K:
return "q3_k"
case TensorTypeQ4_K:
return "q4_k"
case TensorTypeQ5_K:
return "q5_k"
case TensorTypeQ6_K:
return "q6_k"
case TensorTypeQ8_K:
return "q8_k"
case tensorTypeIQ2_XXS:
return "iq2_xxs"
case tensorTypeIQ2_XS:
return "iq2_xs"
case tensorTypeIQ3_XXS:
return "iq3_xxs"
case tensorTypeIQ1_S:
return "iq1_s"
case tensorTypeIQ4_NL:
return "iq4_nl"
case tensorTypeIQ3_S:
return "iq3_s"
case tensorTypeIQ2_S:
return "iq2_s"
case tensorTypeIQ4_XS:
return "iq4_xs"
case TensorTypeI8:
return "i8"
case TensorTypeI16:
return "i16"
case TensorTypeI32:
return "i32"
case TensorTypeI64:
return "i64"
case TensorTypeF64:
return "f64"
case tensorTypeIQ1_M:
return "iq1_m"
case TensorTypeBF16:
return "bf16"
case tensorTypeQ4_0_4_4:
return "q4_0_4_4"
case tensorTypeQ4_0_4_8:
return "q4_0_4_8"
case tensorTypeQ4_0_8_8:
return "q4_0_8_8"
case tensorTypeTQ1_0:
return "tq1_0"
case tensorTypeTQ2_0:
return "tq2_0"
case tensorTypeIQ4_NL_4_4:
return "iq4_nl_4_4"
case tensorTypeIQ4_NL_4_8:
return "iq4_nl_4_8"
case tensorTypeIQ4_NL_8_8:
return "iq4_nl_8_8"
default:
return "unknown"
}
}
func (tt TensorType) LogValue() slog.Value {
return slog.GroupValue(
slog.Uint64("value", uint64(tt)),
slog.String("name", strings.ToUpper(tt.String())),
slog.Int64("size", tt.typeSize()),
slog.Int64("block_size", tt.blockSize()),
slog.Float64("num_bytes", tt.NumBytes()),
)
}

2
go.mod
View File

@ -19,7 +19,7 @@ require (
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1 github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/dlclark/regexp2 v1.11.4 github.com/dlclark/regexp2 v1.11.4
github.com/emirpasic/gods/v2 v2.0.0-alpha github.com/emirpasic/gods/v2 v2.0.0-alpha
github.com/google/go-cmp v0.6.0 github.com/google/go-cmp v0.7.0
github.com/mattn/go-runewidth v0.0.14 github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0 github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c

4
go.sum
View File

@ -112,8 +112,8 @@ github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/
github.com/google/go-cmp v0.5.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE= github.com/google/go-cmp v0.5.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE= github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE= github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI= github.com/google/go-cmp v0.7.0 h1:wk8382ETsv4JYUZwIsn6YpYiWiBsYLSJiTsyBybVuN8=
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY= github.com/google/go-cmp v0.7.0/go.mod h1:pXiqmnSA92OHEEa9HXL2W4E7lf9JzCmGVUdgjX3N/iU=
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg= github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/google/uuid v1.1.2/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo= github.com/google/uuid v1.1.2/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0= github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=

View File

@ -19,7 +19,7 @@ func TestVisionModels(t *testing.T) {
} }
testCases := []testCase{ testCases := []testCase{
{ {
model: "llava:7b", model: "qwen2.5vl",
}, },
{ {
model: "llama3.2-vision", model: "llama3.2-vision",
@ -60,6 +60,7 @@ func TestVisionModels(t *testing.T) {
} }
func TestIntegrationSplitBatch(t *testing.T) { func TestIntegrationSplitBatch(t *testing.T) {
skipUnderMinVRAM(t, 6)
image, err := base64.StdEncoding.DecodeString(imageEncoding) image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err) require.NoError(t, err)
req := api.GenerateRequest{ req := api.GenerateRequest{

View File

@ -45,6 +45,8 @@ var (
"qwen2.5-coder:latest", "qwen2.5-coder:latest",
"qwen:latest", "qwen:latest",
"solar-pro:latest", "solar-pro:latest",
"codellama:latest",
"nous-hermes:latest",
} }
) )

File diff suppressed because one or more lines are too long

View File

@ -30,6 +30,11 @@ type Causal struct {
// ** current forward pass ** // ** current forward pass **
// curReserve indicates that this forward pass is only for
// memory reservation and we should not update our metadata
// based on it.
curReserve bool
// the active layer for Get and Put // the active layer for Get and Put
curLayer int curLayer int
@ -159,12 +164,13 @@ func (c *Causal) Close() {
} }
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error { func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
c.curReserve = reserve
c.curBatchSize = len(batch.Positions) c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences c.curSequences = batch.Sequences
c.curPositions = batch.Positions c.curPositions = batch.Positions
c.opts.Except = nil c.opts.Except = nil
if !reserve { if !c.curReserve {
c.updateSlidingWindow() c.updateSlidingWindow()
var err error var err error
@ -211,10 +217,9 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
c.curCellRange.max = len(c.cells) - 1 c.curCellRange.max = len(c.cells) - 1
} }
var err error c.curMask = c.buildMask(ctx)
c.curMask, err = c.buildMask(ctx)
return err return nil
} }
func newRange() cellRange { func newRange() cellRange {
@ -297,7 +302,7 @@ func roundUp(length, pad int) int {
// Builds a mask of history x batch indicating whether for each token in the batch the // Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the // token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch). // position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) { func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
// Align and pad the two dimensions as required by the backend // Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding) batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
@ -305,6 +310,11 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1 c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
length := c.curCellRange.max - c.curCellRange.min + 1 length := c.curCellRange.max - c.curCellRange.min + 1
if c.curReserve {
return ctx.Input().Empty(c.config.MaskDType, length, batchSize)
}
mask := make([]float32, batchSize*length) mask := make([]float32, batchSize*length)
for i := range c.curBatchSize { for i := range c.curBatchSize {
@ -325,10 +335,7 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
mask[i] = float32(math.Inf(-1)) mask[i] = float32(math.Inf(-1))
} }
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize) maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
if err != nil {
return nil, err
}
if c.config.MaskDType != ml.DTypeF32 { if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...) out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
@ -336,7 +343,7 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
maskTensor = out maskTensor = out
} }
return maskTensor, nil return maskTensor
} }
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) { func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
@ -491,12 +498,7 @@ func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
if !slices.Equal(c.opts.Except, opts.Except) { if !slices.Equal(c.opts.Except, opts.Except) {
c.opts = opts c.opts = opts
if ctx != nil { if ctx != nil {
var err error c.curMask = c.buildMask(ctx)
c.curMask, err = c.buildMask(ctx)
if err != nil {
// This error should never occur because we have previously built a mask with the same shape
panic(fmt.Errorf("SetCausal: %w", err))
}
} }
} }
} }
@ -652,10 +654,7 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
} }
} }
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets)) kShift := ctx.Input().FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}
for i, key := range c.keys { for i, key := range c.keys {
if key == nil { if key == nil {

View File

@ -344,7 +344,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
} }
cache.SetLayer(0) cache.SetLayer(0)
tensor, _ := context.FromFloatSlice(test.in, test.inShape...) tensor := context.FromFloatSlice(test.in, test.inShape...)
cache.Put(context, tensor, tensor) cache.Put(context, tensor, tensor)
out, _, mask := cache.Get(context) out, _, mask := cache.Get(context)
@ -386,7 +386,7 @@ func TestCanResume(t *testing.T) {
} }
cache.SetLayer(0) cache.SetLayer(0)
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4) tensor := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
cache.Put(context, tensor, tensor) cache.Put(context, tensor, tensor)
// with window size 4, nothing has slid out of the window yet // with window size 4, nothing has slid out of the window yet
@ -413,7 +413,7 @@ func TestCanResume(t *testing.T) {
} }
cache.SetLayer(0) cache.SetLayer(0)
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2) tensor = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
cache.Put(context, tensor, tensor) cache.Put(context, tensor, tensor)
// only the latest position has overlapping windows // only the latest position has overlapping windows
@ -470,24 +470,24 @@ func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
return c.Empty(dtype, shape...) return c.Empty(dtype, shape...)
} }
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) { func (c *testContext) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
t := c.Empty(ml.DTypeF32, shape...).(*testTensor) t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s) copy(t.data, s)
return t, nil return t
} }
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) { func (c *testContext) FromIntSlice(s []int32, shape ...int) ml.Tensor {
f := make([]float32, len(s)) f := make([]float32, len(s))
for i := range f { for i := range f {
f[i] = float32(s[i]) f[i] = float32(s[i])
} }
out, _ := c.FromFloatSlice(f, shape...) out := c.FromFloatSlice(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32 out.(*testTensor).dtype = ml.DTypeI32
return out, nil return out
} }
func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor { func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
@ -496,7 +496,7 @@ func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tenso
s = append(s, i) s = append(s, i)
} }
out, _ := c.FromFloatSlice(s, len(s)) out := c.FromFloatSlice(s, len(s))
out.(*testTensor).dtype = dtype out.(*testTensor).dtype = dtype
return out return out
} }
@ -508,7 +508,7 @@ func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {} func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) Reserve() error { return nil } func (c *testContext) Reserve() {}
func (c *testContext) MaxGraphNodes() int { func (c *testContext) MaxGraphNodes() int {
return 10 return 10

2
llama/build-info.cpp generated vendored
View File

@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0; int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "e1e8e0991ffd9e99a445c6812bb519d5bac9f4b5"; char const *LLAMA_COMMIT = "de4c07f93783a1a96456a44dc16b9db538ee1618";
char const *LLAMA_COMPILER = ""; char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = ""; char const *LLAMA_BUILD_TARGET = "";

View File

@ -10,11 +10,11 @@ include common/stb_image.*
include include/ include include/
include include/llama.* include include/llama.*
include include/llama-*.* include include/llama-*.*
include examples/ include tools/
include examples/llava/ include tools/mtmd/
include examples/llava/clip.* include tools/mtmd/clip.*
include examples/llava/clip-impl.* include tools/mtmd/clip-impl.*
include examples/llava/llava.* include tools/mtmd/llava.*
include src/ include src/
include src/llama.* include src/llama.*
include src/llama-*.* include src/llama-*.*

View File

@ -1096,7 +1096,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.n_threads = params.cpuparams.n_threads; cparams.n_threads = params.cpuparams.n_threads;
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ? cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
params.cpuparams.n_threads : params.cpuparams_batch.n_threads; params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
cparams.logits_all = params.logits_all;
cparams.embeddings = params.embedding; cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type; cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base; cparams.rope_freq_base = params.rope_freq_base;
@ -1114,6 +1113,7 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.offload_kqv = !params.no_kv_offload; cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn; cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf; cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
if (params.reranking) { if (params.reranking) {
cparams.embeddings = true; cparams.embeddings = true;
@ -1565,3 +1565,20 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result; return result;
} }
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
const int64_t ne_datapoint = llama_n_ctx(ctx);
const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride;
ggml_opt_dataset_t result = ggml_opt_dataset_init(
GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);
llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data;
llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;
for (int64_t idata = 0; idata < ndata; ++idata) {
memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
}
return result;
}

View File

@ -66,7 +66,6 @@ enum llama_example {
LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_RETRIEVAL,
@ -96,6 +95,7 @@ enum common_sampler_type {
COMMON_SAMPLER_TYPE_XTC = 8, COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9, COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10, COMMON_SAMPLER_TYPE_PENALTIES = 10,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
}; };
// dimensionality reduction methods, used by cvector-generator // dimensionality reduction methods, used by cvector-generator
@ -161,6 +161,7 @@ struct common_params_sampling {
std::vector<enum common_sampler_type> samplers = { std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES, COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY, COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
COMMON_SAMPLER_TYPE_TOP_K, COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TYPICAL_P, COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P, COMMON_SAMPLER_TYPE_TOP_P,
@ -323,7 +324,6 @@ struct common_params {
bool ctx_shift = true; // context shift on inifinite text generation bool ctx_shift = true; // context shift on inifinite text generation
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation bool verbose_prompt = false; // print prompt tokens before generation
@ -332,6 +332,7 @@ struct common_params {
bool no_kv_offload = false; // disable KV offloading bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data bool check_tensors = false; // validate tensor data
bool no_op_offload = false; // globally disable offload host tensor operations to device
bool single_turn = false; // single turn chat conversation bool single_turn = false; // single turn chat conversation
@ -340,7 +341,7 @@ struct common_params {
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO; common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava) // multimodal models (see tools/mtmd)
struct common_params_model mmproj; struct common_params_model mmproj;
bool mmproj_use_gpu = true; // use GPU for multimodal model bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model bool no_mmproj = false; // explicitly disable multimodal model
@ -409,13 +410,14 @@ struct common_params {
bool process_output = false; // collect data for the output tensor bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity bool compute_ppl = true; // whether to compute perplexity
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
// cvector-generator params // cvector-generator params
int n_pca_batch = 100; int n_pca_batch = 100;
int n_pca_iterations = 1000; int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA; dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_positive_file = "examples/cvector-generator/positive.txt"; std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt"; std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill bool spm_infill = false; // suffix/prefix/middle pattern for infill
@ -664,3 +666,9 @@ const char * const LLM_KV_SPLIT_COUNT = "split.count";
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"; const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
} }
//
// training utils
//
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);

View File

@ -1,6 +1,7 @@
#include "sampling.h" #include "sampling.h"
#include "common.h" #include "common.h"
#include "log.h"
#include <cmath> #include <cmath>
#include <unordered_map> #include <unordered_map>
@ -229,51 +230,48 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.logit_bias.data())); params.logit_bias.data()));
if (params.mirostat == 0) { if (params.mirostat == 0) {
if (params.top_n_sigma >= 0) { for (const auto & cnstr : params.samplers) {
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k)); switch (cnstr) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp)); case COMMON_SAMPLER_TYPE_DRY:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma)); {
} else { std::vector<const char *> c_breakers;
for (const auto & cnstr : params.samplers) { c_breakers.reserve(params.dry_sequence_breakers.size());
switch (cnstr) { for (const auto & str : params.dry_sequence_breakers) {
case COMMON_SAMPLER_TYPE_DRY: c_breakers.push_back(str.c_str());
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
} }
break;
case COMMON_SAMPLER_TYPE_TOP_K: llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k)); }
break; break;
case COMMON_SAMPLER_TYPE_TOP_P: case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep)); llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break; break;
case COMMON_SAMPLER_TYPE_MIN_P: case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep)); llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break; break;
case COMMON_SAMPLER_TYPE_XTC: case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed)); llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
break; break;
case COMMON_SAMPLER_TYPE_TYPICAL_P: case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep)); llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break; break;
case COMMON_SAMPLER_TYPE_TEMPERATURE: case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent)); llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break; break;
case COMMON_SAMPLER_TYPE_INFILL: case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab)); llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break; break;
case COMMON_SAMPLER_TYPE_PENALTIES: case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present)); llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break; break;
default: case COMMON_SAMPLER_TYPE_INFILL:
GGML_ASSERT(false && "unknown sampler type"); llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
} break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
} }
} }
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed)); llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
@ -475,6 +473,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return 'k'; case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y'; case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
case COMMON_SAMPLER_TYPE_TOP_P: return 'p'; case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
case COMMON_SAMPLER_TYPE_MIN_P: return 'm'; case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't'; case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
case COMMON_SAMPLER_TYPE_XTC: return 'x'; case COMMON_SAMPLER_TYPE_XTC: return 'x';
@ -490,6 +489,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k"; case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p"; case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p"; case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p"; case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature"; case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
case COMMON_SAMPLER_TYPE_XTC: return "xtc"; case COMMON_SAMPLER_TYPE_XTC: return "xtc";
@ -504,6 +504,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "dry", COMMON_SAMPLER_TYPE_DRY }, { "dry", COMMON_SAMPLER_TYPE_DRY },
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K }, { "top_k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P }, { "top_p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P }, { "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P }, { "min_p", COMMON_SAMPLER_TYPE_MIN_P },
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE }, { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
@ -517,6 +518,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map { std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K }, { "top-k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P }, { "top-p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P }, { "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P }, { "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P }, { "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
@ -533,14 +535,16 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
auto sampler = sampler_canonical_name_map.find(name); auto sampler = sampler_canonical_name_map.find(name);
if (sampler != sampler_canonical_name_map.end()) { if (sampler != sampler_canonical_name_map.end()) {
samplers.push_back(sampler->second); samplers.push_back(sampler->second);
} else { continue;
if (allow_alt_names) { }
sampler = sampler_alt_name_map.find(name); if (allow_alt_names) {
if (sampler != sampler_alt_name_map.end()) { sampler = sampler_alt_name_map.find(name);
samplers.push_back(sampler->second); if (sampler != sampler_alt_name_map.end()) {
} samplers.push_back(sampler->second);
continue;
} }
} }
LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
} }
return samplers; return samplers;
@ -552,6 +556,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K }, { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P }, { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P }, { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P }, { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE }, { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC }, { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
@ -566,6 +571,8 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
const auto sampler = sampler_name_map.find(c); const auto sampler = sampler_name_map.find(c);
if (sampler != sampler_name_map.end()) { if (sampler != sampler_name_map.end()) {
samplers.push_back(sampler->second); samplers.push_back(sampler->second);
} else {
LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
} }
} }

View File

@ -4,6 +4,7 @@
#include "ggml.h" #include "ggml.h"
#include "ggml-cpu.h" #include "ggml-cpu.h"
#include "ggml-backend.h" #include "ggml-backend.h"
#include "ggml-opt.h"
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
@ -112,6 +113,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32, LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33, LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34, LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
}; };
enum llama_rope_type { enum llama_rope_type {
@ -256,7 +258,6 @@ extern "C" {
llama_token * token; llama_token * token;
float * embd; float * embd;
int32_t n_embd;
llama_pos * pos; llama_pos * pos;
int32_t * n_seq_id; int32_t * n_seq_id;
llama_seq_id ** seq_id; llama_seq_id ** seq_id;
@ -352,20 +353,18 @@ extern "C" {
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL] enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL] enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
// TODO: move at the end of the struct
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
bool no_perf; // whether to measure performance timings
bool cross_attn; // whether to use cross attention
// Abort callback // Abort callback
// if it returns true, execution of llama_decode() will be aborted // if it returns true, execution of llama_decode() will be aborted
// currently works only with CPU execution // currently works only with CPU execution
ggml_abort_callback abort_callback; ggml_abort_callback abort_callback;
void * abort_callback_data; void * abort_callback_data;
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
bool no_perf; // whether to measure performance timings
bool op_offload; // whether to offload host tensor operations to device
}; };
// model quantization parameters // model quantization parameters
@ -447,6 +446,10 @@ extern "C" {
size_t n_paths, size_t n_paths,
struct llama_model_params params); struct llama_model_params params);
LLAMA_API void llama_model_save_to_file(
const struct llama_model * model,
const char * path_model);
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model), DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
"use llama_model_free instead"); "use llama_model_free instead");
@ -461,10 +464,6 @@ extern "C" {
struct llama_context_params params), struct llama_context_params params),
"use llama_init_from_model instead"); "use llama_init_from_model instead");
// TODO (jmorganca): this should most likely be passed in as part of a batch
// and not set on the context for all batches.
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
// Frees all allocated memory // Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx); LLAMA_API void llama_free(struct llama_context * ctx);
@ -930,14 +929,19 @@ extern "C" {
// Frees a batch of tokens allocated with llama_batch_init() // Frees a batch of tokens allocated with llama_batch_init()
LLAMA_API void llama_batch_free(struct llama_batch batch); LLAMA_API void llama_batch_free(struct llama_batch batch);
// Processes a batch of tokens with the ecoder part of the encoder-decoder model. // Process a batch of tokens.
// Stores the encoder output internally for later use by the decoder cross-attention layers. // In contrast to llama_decode() - this call does not use KV cache.
// For encode-decoder contexts, processes the batch using the encoder.
// Can store the encoder output internally for later use by the decoder's cross-attention layers.
// 0 - success // 0 - success
// < 0 - error. the KV cache state is restored to the state before this call // < 0 - error. the KV cache state is restored to the state before this call
LLAMA_API int32_t llama_encode( LLAMA_API int32_t llama_encode(
struct llama_context * ctx, struct llama_context * ctx,
struct llama_batch batch); struct llama_batch batch);
// Process a batch of tokens.
// Requires KV cache.
// For encode-decoder contexts, processes the batch using the decoder.
// Positive return values does not mean a fatal error, but rather a warning. // Positive return values does not mean a fatal error, but rather a warning.
// 0 - success // 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context) // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
@ -1434,6 +1438,37 @@ extern "C" {
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain); LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain); LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
//
// training
//
// function that returns whether or not a given tensor contains trainable parameters
typedef bool (*llama_opt_param_filter)(const struct ggml_tensor * tensor, void * userdata);
// always returns true
LLAMA_API bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata);
struct llama_opt_params {
uint32_t n_ctx_train; // assumed context size post training, use context size specified in llama_context if 0
llama_opt_param_filter param_filter; // callback for determining which tensors contain trainable parameters
void * param_filter_ud; // userdata for determining which tensors contain trainable parameters
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
};
LLAMA_API void llama_opt_init(struct llama_context * lctx, struct llama_model * model, struct llama_opt_params lopt_params);
LLAMA_API void llama_opt_epoch(
struct llama_context * lctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -253,6 +253,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
std::vector<ggml_backend_buffer_type_t> buft_extra; std::vector<ggml_backend_buffer_type_t> buft_extra;
{ {
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev); auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t) auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
@ -291,6 +294,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft)); LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
buft = ggml_backend_dev_buffer_type(cpu_dev); buft = ggml_backend_dev_buffer_type(cpu_dev);
break; break;

View File

@ -6,7 +6,6 @@
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" }, { LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_MLLAMA, "mllama" },
{ LLM_ARCH_LLAMA4, "llama4" }, { LLM_ARCH_LLAMA4, "llama4" },
{ LLM_ARCH_DECI, "deci" }, { LLM_ARCH_DECI, "deci" },
{ LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_FALCON, "falcon" },
@ -145,7 +144,6 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" }, { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" }, { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" }, { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" }, { LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" }, { LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
@ -275,40 +273,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
}, },
}, },
{
LLM_ARCH_MLLAMA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
{ LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
{ LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
{ LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
{ LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
{ LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
{ LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
{ LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
},
},
{ {
LLM_ARCH_DECI, LLM_ARCH_DECI,
{ {
@ -1737,14 +1701,6 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
// this tensor is loaded for T5, but never used // this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}}, {LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
{LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_K_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_O_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_Q_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_Q_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_V_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CROSS_ATTN_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CROSS_ATTN_MLP_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}}, {LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}},
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},

View File

@ -11,7 +11,6 @@
enum llm_arch { enum llm_arch {
LLM_ARCH_LLAMA, LLM_ARCH_LLAMA,
LLM_ARCH_LLAMA4, LLM_ARCH_LLAMA4,
LLM_ARCH_MLLAMA,
LLM_ARCH_DECI, LLM_ARCH_DECI,
LLM_ARCH_FALCON, LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN, LLM_ARCH_BAICHUAN,
@ -149,7 +148,6 @@ enum llm_kv {
LLM_KV_ATTENTION_SLIDING_WINDOW, LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE, LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
LLM_KV_ATTENTION_KEY_LENGTH_MLA, LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA, LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@ -351,14 +349,6 @@ enum llm_tensor {
LLM_TENSOR_CLS, LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT, LLM_TENSOR_CLS_OUT,
LLM_TENSOR_BSKCN_TV, LLM_TENSOR_BSKCN_TV,
LLM_TENSOR_CROSS_ATTN_K_NORM,
LLM_TENSOR_CROSS_ATTN_K_PROJ,
LLM_TENSOR_CROSS_ATTN_O_PROJ,
LLM_TENSOR_CROSS_ATTN_Q_NORM,
LLM_TENSOR_CROSS_ATTN_Q_PROJ,
LLM_TENSOR_CROSS_ATTN_V_PROJ,
LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
LLM_TENSOR_CROSS_ATTN_MLP_GATE,
LLM_TENSOR_CONV1D, LLM_TENSOR_CONV1D,
LLM_TENSOR_CONVNEXT_DW, LLM_TENSOR_CONVNEXT_DW,
LLM_TENSOR_CONVNEXT_NORM, LLM_TENSOR_CONVNEXT_NORM,

View File

@ -189,7 +189,7 @@ llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
return ubatch; return ubatch;
} }
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) { llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
GGML_ASSERT(batch.n_tokens >= 0); GGML_ASSERT(batch.n_tokens >= 0);
this->batch = &batch; this->batch = &batch;
this->n_embd = n_embd; this->n_embd = n_embd;
@ -203,6 +203,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
for (size_t i = 0; i < n_tokens; ++i) { for (size_t i = 0; i < n_tokens; ++i) {
ids[i] = i; ids[i] = i;
} }
if (simple_split) { if (simple_split) {
seq.resize(1); seq.resize(1);
llama_sbatch_seq & s = seq[0]; llama_sbatch_seq & s = seq[0];
@ -212,6 +213,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
s.length = n_tokens; s.length = n_tokens;
return; return;
} }
std::sort(ids.begin(), ids.end(), std::sort(ids.begin(), ids.end(),
[&batch](size_t a, size_t b) { [&batch](size_t a, size_t b) {
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1; int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
@ -239,6 +241,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
return n_seq_a > n_seq_b; return n_seq_a > n_seq_b;
} }
); );
// init seq // init seq
llama_sbatch_seq * last_seq = nullptr; llama_sbatch_seq * last_seq = nullptr;
@ -262,6 +265,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
seq.push_back(new_seq); seq.push_back(new_seq);
last_seq = &seq.back(); last_seq = &seq.back();
} }
// keep shared prompts first at the end, then sort by length descending. // keep shared prompts first at the end, then sort by length descending.
std::sort(seq.begin(), seq.end(), std::sort(seq.begin(), seq.end(),
[](llama_sbatch_seq & a, llama_sbatch_seq & b) { [](llama_sbatch_seq & a, llama_sbatch_seq & b) {
@ -316,7 +320,6 @@ struct llama_batch llama_batch_get_one(
/*n_tokens =*/ n_tokens, /*n_tokens =*/ n_tokens,
/*tokens =*/ tokens, /*tokens =*/ tokens,
/*embd =*/ nullptr, /*embd =*/ nullptr,
/*n_embd =*/ 0,
/*pos =*/ nullptr, /*pos =*/ nullptr,
/*n_seq_id =*/ nullptr, /*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr, /*seq_id =*/ nullptr,
@ -329,7 +332,6 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
/*n_tokens =*/ 0, /*n_tokens =*/ 0,
/*tokens =*/ nullptr, /*tokens =*/ nullptr,
/*embd =*/ nullptr, /*embd =*/ nullptr,
/*n_embd =*/ 0,
/*pos =*/ nullptr, /*pos =*/ nullptr,
/*n_seq_id =*/ nullptr, /*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr, /*seq_id =*/ nullptr,
@ -338,7 +340,6 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
if (embd) { if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd); batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
batch.n_embd = embd;
} else { } else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc); batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
} }

View File

@ -70,7 +70,8 @@ struct llama_sbatch {
// sequence-wise split // sequence-wise split
llama_ubatch split_seq(size_t n_ubatch); llama_ubatch split_seq(size_t n_ubatch);
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false); llama_sbatch() = default;
llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
}; };
// temporary allocate memory for the input batch if needed // temporary allocate memory for the input batch if needed

View File

@ -35,6 +35,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 }, { "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN }, { "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 }, { "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "mistral-v7-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 }, { "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 }, { "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 }, { "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
@ -202,19 +203,20 @@ int32_t llm_chat_apply_template(
if (add_ass) { if (add_ass) {
ss << "<|im_start|>assistant\n"; ss << "<|im_start|>assistant\n";
} }
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) { } else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 || tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN) {
// Official mistral 'v7' template // Official mistral 'v7' template
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7 // See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
// https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503#basic-instruct-template-v7-tekken
const char * trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 ? " " : "";
for (auto message : chat) { for (auto message : chat) {
std::string role(message->role); std::string role(message->role);
std::string content(message->content); std::string content(message->content);
if (role == "system") { if (role == "system") {
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]"; ss << "[SYSTEM_PROMPT]" << trailing_space << content << "[/SYSTEM_PROMPT]";
} else if (role == "user") { } else if (role == "user") {
ss << "[INST] " << content << "[/INST]"; ss << "[INST]" << trailing_space << content << "[/INST]";
} } else {
else { ss << trailing_space << content << "</s>";
ss << " " << content << "</s>";
} }
} }
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 } else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
@ -447,8 +449,16 @@ int32_t llm_chat_apply_template(
if (add_ass) { if (add_ass) {
ss << "<|assistant|>"; ss << "<|assistant|>";
} }
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4 || tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) { } else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4) {
ss << "[gMASK]" << "<sop>"; ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
for (auto message : chat) { for (auto message : chat) {
std::string role(message->role); std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content; ss << "<|" << role << "|>" << "\n" << message->content;

View File

@ -14,6 +14,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MISTRAL_V3, LLM_CHAT_TEMPLATE_MISTRAL_V3,
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN, LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7, LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN,
LLM_CHAT_TEMPLATE_PHI_3, LLM_CHAT_TEMPLATE_PHI_3,
LLM_CHAT_TEMPLATE_PHI_4, LLM_CHAT_TEMPLATE_PHI_4,
LLM_CHAT_TEMPLATE_FALCON_3, LLM_CHAT_TEMPLATE_FALCON_3,

File diff suppressed because it is too large Load Diff

View File

@ -8,6 +8,7 @@
#include "llama-kv-cache.h" #include "llama-kv-cache.h"
#include "ggml-cpp.h" #include "ggml-cpp.h"
#include "ggml-opt.h"
#include <map> #include <map>
#include <vector> #include <vector>
@ -28,7 +29,12 @@ struct llama_context {
void synchronize(); void synchronize();
const llama_model & get_model() const; const llama_model & get_model() const;
const llama_cparams & get_cparams() const;
ggml_backend_sched_t get_sched() const;
ggml_context * get_ctx_compute() const;
uint32_t n_ctx() const; uint32_t n_ctx() const;
uint32_t n_ctx_per_seq() const; uint32_t n_ctx_per_seq() const;
@ -66,7 +72,6 @@ struct llama_context {
void set_embeddings (bool value); void set_embeddings (bool value);
void set_causal_attn(bool value); void set_causal_attn(bool value);
void set_warmup(bool value); void set_warmup(bool value);
void set_cross_attn(bool value);
void set_adapter_lora( void set_adapter_lora(
llama_adapter_lora * adapter, llama_adapter_lora * adapter,
@ -130,6 +135,32 @@ struct llama_context {
llama_perf_context_data perf_get_data() const; llama_perf_context_data perf_get_data() const;
void perf_reset(); void perf_reset();
//
// training
//
void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);
void opt_epoch(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
void opt_epoch_iter(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result,
const std::vector<llama_token> & tokens,
const std::vector<llama_token> & labels_sparse,
llama_batch & batch,
ggml_opt_epoch_callback callback,
bool train,
int64_t idata_in_loop,
int64_t ndata_in_loop,
int64_t t_loop_start);
private: private:
// //
// output // output
@ -139,50 +170,30 @@ private:
// Returns max number of outputs for which space was reserved. // Returns max number of outputs for which space was reserved.
int32_t output_reserve(int32_t n_outputs); int32_t output_reserve(int32_t n_outputs);
// make the outputs have the same order they had in the user-provided batch
// TODO: maybe remove this
void output_reorder();
// //
// graph // graph
// //
public:
int32_t graph_max_nodes() const; int32_t graph_max_nodes() const;
// zero-out inputs and create the ctx_compute for the compute graph // zero-out inputs and create the ctx_compute for the compute graph
ggml_cgraph * graph_init(); ggml_cgraph * graph_init();
llm_graph_result_ptr graph_build(
ggml_context * ctx,
ggml_cgraph * gf,
const llama_ubatch & ubatch,
llm_graph_type gtype);
// returns the result of ggml_backend_sched_graph_compute_async execution // returns the result of ggml_backend_sched_graph_compute_async execution
ggml_status graph_compute( ggml_status graph_compute(
ggml_cgraph * gf, ggml_cgraph * gf,
bool batched); bool batched);
private:
llm_graph_result_ptr graph_build(
ggml_context * ctx,
ggml_cgraph * gf,
const llama_ubatch & ubatch,
llm_graph_type gtype);
llm_graph_cb graph_get_cb() const; llm_graph_cb graph_get_cb() const;
// used by kv_self_update()
ggml_tensor * build_rope_shift(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const;
llm_graph_result_ptr build_kv_self_shift(
ggml_context * ctx0,
ggml_cgraph * gf) const;
llm_graph_result_ptr build_kv_self_defrag(
ggml_context * ctx0,
ggml_cgraph * gf,
const std::vector<struct llama_kv_defrag_move> & moves) const;
// TODO: read/write lora adapters and cvec // TODO: read/write lora adapters and cvec
size_t state_write_data(llama_io_write_i & io); size_t state_write_data(llama_io_write_i & io);
size_t state_read_data (llama_io_read_i & io); size_t state_read_data (llama_io_read_i & io);
@ -199,14 +210,10 @@ private:
llama_cparams cparams; llama_cparams cparams;
llama_adapter_cvec cvec; llama_adapter_cvec cvec;
llama_adapter_loras loras; llama_adapter_loras loras;
llama_sbatch sbatch;
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
std::unique_ptr<llama_kv_cache_unified> kv_self; std::unique_ptr<llama_memory_i> memory;
// TODO: remove
bool logits_all = false;
// decode output (2-dimensional array: [n_outputs][n_vocab]) // decode output (2-dimensional array: [n_outputs][n_vocab])
size_t logits_size = 0; // capacity (of floats) for logits size_t logits_size = 0; // capacity (of floats) for logits
@ -233,6 +240,9 @@ private:
ggml_context_ptr ctx_compute; ggml_context_ptr ctx_compute;
// training
ggml_opt_context_t opt_ctx = nullptr;
ggml_threadpool_t threadpool = nullptr; ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr; ggml_threadpool_t threadpool_batch = nullptr;

View File

@ -29,8 +29,8 @@ struct llama_cparams {
bool offload_kqv; bool offload_kqv;
bool flash_attn; bool flash_attn;
bool no_perf; bool no_perf;
bool cross_attn;
bool warmup; bool warmup;
bool op_offload;
enum llama_pooling_type pooling_type; enum llama_pooling_type pooling_type;

View File

@ -284,24 +284,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_kv; ++i) { for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head; data[i] = kv_self->s_copy(i);
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
// prevent out-of-bound sources
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
kv_cell.src = cell_id;
}
data[i] = kv_cell.src;
// TODO: do not mutate the KV cache
// ensure copy only happens once
if (kv_cell.src != (int32_t) cell_id) {
kv_cell.src = cell_id;
}
} }
} }
} }
@ -317,18 +300,7 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
// clear unused states // clear unused states
for (int i = 0; i < n_kv; ++i) { for (int i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head; data[i] = kv_self->s_mask(i);
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
data[i] = (float) (kv_cell.src >= 0);
// only clear once
if (kv_cell.src < 0) {
kv_cell.src = cell_id;
}
} }
} }
} }
@ -560,12 +532,6 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
} }
} }
void llm_graph_input_cross_attn_state::set_input(const llama_ubatch * ubatch) {
if (ubatch->embd) {
ggml_backend_tensor_set(cross_attn_state, ubatch->embd, 0, ggml_nbytes(cross_attn_state));
}
}
// //
// llm_graph_context // llm_graph_context
// //
@ -816,7 +782,7 @@ ggml_tensor * llm_graph_context::build_ffn(
} break; } break;
} }
if (type_gate == LLM_FFN_PAR) { if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp); cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il); cb(cur, "ffn_gate_par", il);
} }
@ -1005,6 +971,7 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens); inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
//cb(inp->tokens, "inp_tokens", -1); //cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens); ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens); cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
@ -1111,7 +1078,7 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
} }
ggml_tensor * llm_graph_context::build_inp_s_copy() const { ggml_tensor * llm_graph_context::build_inp_s_copy() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory); const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self); auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
@ -1128,7 +1095,7 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
} }
ggml_tensor * llm_graph_context::build_inp_s_mask() const { ggml_tensor * llm_graph_context::build_inp_s_mask() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory); const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self); auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
@ -1261,8 +1228,19 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
if (v_mla) { if (v_mla) {
#if 0
// v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
// However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens); cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
cur = ggml_mul_mat(ctx0, v_mla, cur); cur = ggml_mul_mat(ctx0, v_mla, cur);
#else
// It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
// The permutations are noops and only change how the tensor data is interpreted.
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_mul_mat(ctx0, v_mla, cur);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
} }
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens); cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
@ -1442,8 +1420,6 @@ ggml_tensor * llm_graph_context::build_attn(
// store to KV cache // store to KV cache
{ {
GGML_ASSERT(!kv_self->recurrent);
const auto kv_head = kv_self->head; const auto kv_head = kv_self->head;
GGML_ASSERT(kv_self->size == n_ctx); GGML_ASSERT(kv_self->size == n_ctx);
@ -1538,25 +1514,6 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp)); return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
} }
ggml_tensor * llm_graph_context::build_inp_cross_attn_state() const {
const int64_t n_embd = hparams.n_embd;
auto inp = std::make_unique<llm_graph_input_cross_attn_state>();
ggml_tensor * cur = nullptr;
inp->cross_attn_state = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd, 1601, 4);
ggml_set_input(inp->cross_attn_state);
cur = inp->cross_attn_state;
cb(cur, "inp_cross_attn_state", -1);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_attn( ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_cross * inp, llm_graph_input_attn_cross * inp,
ggml_cgraph * gf, ggml_cgraph * gf,
@ -1612,7 +1569,7 @@ ggml_tensor * llm_graph_context::build_copy_mask_state(
ggml_tensor * state_mask, ggml_tensor * state_mask,
int32_t n_state, int32_t n_state,
int32_t n_seqs) const { int32_t n_seqs) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory); const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_kv = kv_self->n; const auto n_kv = kv_self->n;
const auto kv_head = kv_self->head; const auto kv_head = kv_self->head;
@ -1644,7 +1601,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
ggml_tensor * state_mask, ggml_tensor * state_mask,
const llama_ubatch & ubatch, const llama_ubatch & ubatch,
int il) const { int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory); const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto token_shift_count = hparams.token_shift_count; const auto token_shift_count = hparams.token_shift_count;
@ -1665,7 +1622,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
ggml_tensor * token_shift, ggml_tensor * token_shift,
const llama_ubatch & ubatch, const llama_ubatch & ubatch,
int il) const { int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory); const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto token_shift_count = hparams.token_shift_count; const auto token_shift_count = hparams.token_shift_count;
const auto n_embd = hparams.n_embd; const auto n_embd = hparams.n_embd;

View File

@ -19,6 +19,7 @@ struct llama_cparams;
class llama_memory_i; class llama_memory_i;
class llama_kv_cache_unified; class llama_kv_cache_unified;
class llama_kv_cache_recurrent;
// certain models (typically multi-modal) can produce different types of graphs // certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type { enum llm_graph_type {
@ -86,7 +87,6 @@ public:
ggml_tensor * tokens = nullptr; // I32 [n_batch] ggml_tensor * tokens = nullptr; // I32 [n_batch]
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch] ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
}; };
class llm_graph_input_pos : public llm_graph_input_i { class llm_graph_input_pos : public llm_graph_input_i {
@ -187,26 +187,26 @@ public:
class llm_graph_input_s_copy : public llm_graph_input_i { class llm_graph_input_s_copy : public llm_graph_input_i {
public: public:
llm_graph_input_s_copy(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {} llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_copy() = default; virtual ~llm_graph_input_s_copy() = default;
void set_input(const llama_ubatch * ubatch) override; void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_copy; // I32 [kv_size] ggml_tensor * s_copy; // I32 [kv_size]
const llama_kv_cache_unified * kv_self; const llama_kv_cache_recurrent * kv_self;
}; };
class llm_graph_input_s_mask : public llm_graph_input_i { class llm_graph_input_s_mask : public llm_graph_input_i {
public: public:
llm_graph_input_s_mask(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {} llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_mask() = default; virtual ~llm_graph_input_s_mask() = default;
void set_input(const llama_ubatch * ubatch) override; void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_mask; // F32 [1, n_kv] ggml_tensor * s_mask; // F32 [1, n_kv]
const llama_kv_cache_unified * kv_self; const llama_kv_cache_recurrent * kv_self;
}; };
class llm_graph_input_cross_embd : public llm_graph_input_i { class llm_graph_input_cross_embd : public llm_graph_input_i {
@ -284,16 +284,6 @@ public:
const llama_cross * cross = nullptr; const llama_cross * cross = nullptr;
}; };
class llm_graph_input_cross_attn_state : public llm_graph_input_i {
public:
llm_graph_input_cross_attn_state() = default;
virtual ~llm_graph_input_cross_attn_state() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
};
// //
// llm_graph_result // llm_graph_result
// //
@ -308,6 +298,7 @@ class llm_graph_result_i {
public: public:
virtual ~llm_graph_result_i() = default; virtual ~llm_graph_result_i() = default;
virtual ggml_tensor * get_tokens() = 0;
virtual ggml_tensor * get_logits() = 0; virtual ggml_tensor * get_logits() = 0;
virtual ggml_tensor * get_embd() = 0; virtual ggml_tensor * get_embd() = 0;
virtual ggml_tensor * get_embd_pooled() = 0; virtual ggml_tensor * get_embd_pooled() = 0;
@ -322,6 +313,7 @@ class llm_graph_result : public llm_graph_result_i {
public: public:
virtual ~llm_graph_result() = default; virtual ~llm_graph_result() = default;
ggml_tensor * get_tokens() override { return t_tokens; }
ggml_tensor * get_logits() override { return t_logits; } ggml_tensor * get_logits() override { return t_logits; }
ggml_tensor * get_embd() override { return t_embd; } ggml_tensor * get_embd() override { return t_embd; }
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; } ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
@ -338,6 +330,7 @@ public:
} }
// important graph nodes // important graph nodes
ggml_tensor * t_tokens = nullptr;
ggml_tensor * t_logits = nullptr; ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr; ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr; ggml_tensor * t_embd_pooled = nullptr;
@ -361,8 +354,8 @@ struct llm_graph_params {
const llama_cparams & cparams; const llama_cparams & cparams;
const llama_ubatch & ubatch; const llama_ubatch & ubatch;
ggml_backend_sched * sched; ggml_backend_sched_t sched;
ggml_backend * backend_cpu; ggml_backend_t backend_cpu;
const llama_adapter_cvec * cvec; const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras; const llama_adapter_loras * loras;
@ -413,9 +406,9 @@ struct llm_graph_context {
ggml_context * ctx0 = nullptr; ggml_context * ctx0 = nullptr;
ggml_backend_sched * sched; ggml_backend_sched_t sched;
ggml_backend * backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove? ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
const llama_adapter_cvec * cvec; const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras; const llama_adapter_loras * loras;
@ -502,7 +495,6 @@ struct llm_graph_context {
ggml_tensor * build_inp_cls() const; ggml_tensor * build_inp_cls() const;
ggml_tensor * build_inp_s_copy() const; ggml_tensor * build_inp_s_copy() const;
ggml_tensor * build_inp_s_mask() const; ggml_tensor * build_inp_s_mask() const;
ggml_tensor * build_inp_cross_attn_state() const;
ggml_tensor * build_inp_cross_embd() const; ggml_tensor * build_inp_cross_embd() const;
ggml_tensor * build_inp_pos_bucket_enc() const; ggml_tensor * build_inp_pos_bucket_enc() const;

View File

@ -85,7 +85,3 @@ bool llama_hparams::is_swa(uint32_t il) const {
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
bool llama_hparams::cross_attention_layers(uint32_t il) const {
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
}

View File

@ -2,8 +2,6 @@
#include "llama.h" #include "llama.h"
#include <algorithm>
#include <array> #include <array>
// bump if necessary // bump if necessary
@ -44,7 +42,6 @@ struct llama_hparams {
uint32_t n_expert = 0; uint32_t n_expert = 0;
uint32_t n_expert_used = 0; uint32_t n_expert_used = 0;
uint32_t n_rel_attn_bkts = 0; uint32_t n_rel_attn_bkts = 0;
uint32_t n_vocab = 0;
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA // note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
uint32_t n_embd_head_k_mla = 0; uint32_t n_embd_head_k_mla = 0;
@ -59,7 +56,6 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr; std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {}; std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
uint32_t n_layer_dense_lead = 0; uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0; uint32_t n_lora_q = 0;
@ -163,9 +159,6 @@ struct llama_hparams {
// Block skip connection // Block skip connection
bool n_bskcn(uint32_t n, uint32_t il) const; bool n_bskcn(uint32_t n, uint32_t il) const;
// cross attention layers
bool cross_attention_layers(uint32_t il) const;
bool is_swa(uint32_t il) const; bool is_swa(uint32_t il) const;
}; };

File diff suppressed because it is too large Load Diff

View File

@ -2,32 +2,72 @@
#include "llama.h" #include "llama.h"
#include "llama-io.h" #include "llama-io.h"
#include "llama-graph.h"
#include "llama-memory.h" #include "llama-memory.h"
#include "ggml-cpp.h" #include "ggml-cpp.h"
#include <functional>
#include <set> #include <set>
#include <vector> #include <vector>
struct llama_cparams; struct llama_cparams;
struct llama_hparams; struct llama_hparams;
struct llama_ubatch; struct llama_ubatch;
struct llama_sbatch;
struct llama_model;
struct llama_context;
struct llama_kv_cache : public llama_memory_i { struct llama_kv_cache : public llama_memory_i {
using llama_memory_i::llama_memory_i; virtual ~llama_kv_cache() = default;
virtual void restore() = 0; // call if batch processing fails - restores the cache state // call if batch processing fails - restores the cache state
virtual void commit() = 0; // call after successful batch processing - clears any pending state virtual void restore() = 0;
virtual int32_t get_n_tokens() const = 0; // call after successful batch processing - clears any pending state
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache virtual void commit() = 0;
virtual bool get_can_shift() const = 0; // process any pending defrag/shift/etc. operations
// optionally call once before processing a new batch
virtual bool update(llama_context & lctx) = 0;
// schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing
virtual void defrag_sched(float thold) = 0;
// simulate full cache, used for allocating worst-case compute buffers
virtual void set_full() = 0;
//
// batch processing
//
virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0;
// different KV caches require different batch splitting strategies
virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0;
// find an empty slot of size "n_tokens" in the cache
virtual bool find_slot(const llama_ubatch & batch) = 0;
// getters
virtual int32_t get_n_tokens() const = 0;
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
virtual llama_pos get_pos_max() const = 0;
virtual bool get_can_shift() const = 0;
bool get_can_edit() const override { return get_can_shift(); } bool get_can_edit() const override { return get_can_shift(); }
//
// state write/read
//
virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0;
virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0;
}; };
//
// llama_kv_cache_guard
//
struct llama_kv_cache_guard { struct llama_kv_cache_guard {
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {} llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
@ -42,7 +82,7 @@ struct llama_kv_cache_guard {
private: private:
llama_kv_cache * kv; llama_kv_cache * kv;
}; };
// block of KV slots to move when defragging // block of KV slots to move when defragging
struct llama_kv_defrag_move { struct llama_kv_defrag_move {
uint32_t src; uint32_t src;
@ -50,65 +90,50 @@ struct llama_kv_defrag_move {
uint32_t len; uint32_t len;
}; };
struct llama_kv_cell { //
llama_pos pos = -1; // llama_kv_cache_unified
llama_pos delta = 0; //
int32_t src = -1; // used by recurrent state models to copy states
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const llama_kv_cell & other) const {
return seq_id == other.seq_id;
}
};
// ring-buffer of cached KV data
// TODO: pimpl
// TODO: add notion of max sequences // TODO: add notion of max sequences
class llama_kv_cache_unified : public llama_kv_cache { class llama_kv_cache_unified : public llama_kv_cache {
public: public:
// can be used to query data from the model if needed struct kv_cell {
struct callbacks { llama_pos pos = -1;
std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors; llama_pos delta = 0;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const kv_cell & other) const {
return seq_id == other.seq_id;
}
}; };
static uint32_t get_padding(const llama_cparams & cparams);
llama_kv_cache_unified( llama_kv_cache_unified(
const llama_hparams & hparams, const llama_model & model,
callbacks cbs);
virtual ~llama_kv_cache_unified() = default;
// TODO: become constructor
bool init(
const llama_model & model, // TODO: do not reference the model
const llama_cparams & cparams,
ggml_type type_k, ggml_type type_k,
ggml_type type_v, ggml_type type_v,
bool v_trans,
bool offload,
uint32_t kv_size, uint32_t kv_size,
bool offload); uint32_t padding);
int32_t get_n_tokens() const override; ~llama_kv_cache_unified() = default;
int32_t get_used_cells() const override;
size_t total_size() const; //
// llama_memory_i
// TODO: better data structures to reduce the cost of this operation //
llama_pos pos_max() const;
void clear() override; void clear() override;
void defrag() override;
virtual void restore() override;
virtual void commit() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
@ -118,63 +143,40 @@ public:
llama_pos seq_pos_max(llama_seq_id seq_id) const override; llama_pos seq_pos_max(llama_seq_id seq_id) const override;
bool get_can_shift() const override; //
// llama_kv_cache
//
void restore() override;
void commit() override;
bool update(llama_context & ctx) override;
void defrag_sched(float thold) override;
void set_full() override;
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
// find an empty slot of size "n_tokens" in the cache
// updates the cache head // updates the cache head
// Note: On success, it's important that cache.head points // Note: On success, it's important that cache.head points
// to the first cell of the slot. // to the first cell of the slot.
bool find_slot(const llama_ubatch & batch); bool find_slot(const llama_ubatch & batch) override;
// TODO: maybe not needed int32_t get_n_tokens() const override;
uint32_t get_padding(const llama_cparams & cparams) const; int32_t get_used_cells() const override;
// find how many cells are currently in use // TODO: better data structures to reduce the cost of this operation
uint32_t cell_max() const; llama_pos get_pos_max() const override;
size_t size_k_bytes() const; bool get_can_shift() const override;
size_t size_v_bytes() const;
// defrag
struct {
std::vector<llama_kv_defrag_move> moves;
} defrag_info;
// return true if cells have been moved
bool defrag_prepare(int32_t n_max_nodes);
// commit/restore cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
// state write/load // state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const; void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1); void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
// members
const llama_hparams & hparams;
callbacks cbs;
bool has_shift = false;
bool do_defrag = false;
// TODO: remove this and implement llama_kv_cache_recurrent instead
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
// Note: The value of head isn't only used to optimize searching // Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_impl also uses it, so it // for a free KV slot. llama_decode_impl also uses it, so it
@ -186,18 +188,214 @@ public:
// computed before each graph build // computed before each graph build
uint32_t n = 0; uint32_t n = 0;
std::vector<llama_kv_cell> cells; std::vector<kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l; std::vector<ggml_tensor *> v_l;
private: private:
const llama_model & model;
const llama_hparams & hparams;
bool has_shift = false;
bool do_defrag = false;
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
// required padding
uint32_t padding = 1;
ggml_type type_k = GGML_TYPE_F16; ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16; ggml_type type_v = GGML_TYPE_F16;
std::vector<ggml_context_ptr> ctxs; std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs; std::vector<ggml_backend_buffer_ptr> bufs;
// defrag
struct {
std::vector<llama_kv_defrag_move> moves;
} defrag_info;
// return true if cells have been moved
bool defrag_prepare(int32_t n_max_nodes);
// commit/restore cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
// find how many cells are currently in use
uint32_t cell_max() const;
size_t total_size() const;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
ggml_tensor * build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const;
llm_graph_result_ptr build_graph_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf) const;
llm_graph_result_ptr build_graph_defrag(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf,
const std::vector<llama_kv_defrag_move> & moves) const;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
};
//
// llama_kv_cache_recurrent
//
class llama_kv_cache_recurrent : public llama_kv_cache {
public:
struct kv_cell {
llama_pos pos = -1;
int32_t src = -1; // used to copy states
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const kv_cell & other) const {
return seq_id == other.seq_id;
}
};
llama_kv_cache_recurrent(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool offload,
uint32_t kv_size);
~llama_kv_cache_recurrent() = default;
//
// llama_memory_i
//
void clear() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
void seq_keep(llama_seq_id seq_id) override;
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override;
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
//
// llama_kv_cache
//
void restore() override;
void commit() override;
bool update(llama_context & lctx) override;
void defrag_sched(float thold) override;
void set_full() override;
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
bool find_slot(const llama_ubatch & batch) override;
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
// TODO: better data structures to reduce the cost of this operation
llama_pos get_pos_max() const override;
bool get_can_shift() const override;
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
int32_t s_copy(int i) const;
float s_mask(int i) const;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_impl also uses it, so it
// cannot be freely changed after a slot has been allocated.
uint32_t head = 0;
uint32_t size = 0;
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build
uint32_t n = 0;
std::vector<kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l;
private:
//const llama_model & model;
const llama_hparams & hparams;
// commit/restore cache
// TODO: rework for recurrent cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// find how many cells are currently in use
uint32_t cell_max() const;
size_t total_size() const;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const; void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const; void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
@ -205,11 +403,6 @@ private:
bool state_read_data(llama_io_read_i & io, uint32_t cell_count); bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
}; };
// TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified
//class llama_kv_cache_recurrent : public llama_kv_cache_unified {
//public:
// using llama_kv_cache_unified::llama_kv_cache_unified;
//};
// //
// kv cache view // kv cache view

View File

@ -2,12 +2,22 @@
#include "llama.h" #include "llama.h"
struct llama_memory_params {
// kv cache
ggml_type type_k;
ggml_type type_v;
// parameters for other types of memory
// ...
};
// general concept of LLM memory // general concept of LLM memory
// the KV cache is a type of LLM memory, but there can be other types // the KV cache is a type of LLM memory, but there can be other types
class llama_memory_i { class llama_memory_i {
public: public:
virtual ~llama_memory_i() = default;
virtual void clear() = 0; virtual void clear() = 0;
virtual void defrag() = 0;
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0; virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0; virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;

View File

@ -301,12 +301,12 @@ namespace GGUFMeta {
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
switch (arr_info.gt) { switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break; case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32: GGML_ASSERT( case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
(std::is_same<T, int32_t>::value) || (std::is_same<T, uint32_t>::value)); break;
(std::is_same<T, uint32_t>::value)); break; case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
default: default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str()));
} }
result.resize(arr_info.length); result.resize(arr_info.length);
@ -315,8 +315,6 @@ namespace GGUFMeta {
return true; return true;
} }
template bool llama_model_loader::get_arr<std::array<unsigned int, 512>>(enum llm_kv kid, std::array<unsigned int, 512>& result, bool required);
template<typename T, size_t N_MAX> template<typename T, size_t N_MAX>
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) { bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str()); const int kid = gguf_find_key(meta.get(), key.c_str());
@ -332,12 +330,12 @@ namespace GGUFMeta {
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
switch (arr_info.gt) { switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break; case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32: GGML_ASSERT( case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
(std::is_same<T, int32_t>::value) || (std::is_same<T, uint32_t>::value)); break;
(std::is_same<T, uint32_t>::value)); break; case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
default: default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str()));
} }
if (arr_info.length > N_MAX) { if (arr_info.length > N_MAX) {
@ -826,6 +824,10 @@ void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps
mmaps_used.reserve(files.size()); mmaps_used.reserve(files.size());
for (const auto & file : files) { for (const auto & file : files) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU)); auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
if (!reg) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa"); auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn()); std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
mmaps_used.emplace_back(mapping->size(), 0); mmaps_used.emplace_back(mapping->size(), 0);

View File

@ -0,0 +1,281 @@
#include "llama-model-saver.h"
#include "gguf.h"
#include "llama.h"
#include "llama-hparams.h"
#include "llama-model.h"
#include "llama-vocab.h"
#include <string>
llama_model_saver::llama_model_saver(const struct llama_model & model) : model(model), llm_kv(model.arch) {
gguf_ctx = gguf_init_empty();
}
llama_model_saver::~llama_model_saver() {
gguf_free(gguf_ctx);
}
void llama_model_saver::add_kv(const enum llm_kv key, const uint32_t value) {
gguf_set_val_u32(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const int32_t value) {
gguf_set_val_i32(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const float value) {
gguf_set_val_f32(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const bool value) {
gguf_set_val_bool(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const char * value) {
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), value);
}
[[noreturn]]
void llama_model_saver::add_kv(const enum llm_kv key, const char value) {
GGML_UNUSED(key);
GGML_UNUSED(value);
GGML_ABORT("fatal error"); // this should never be called, only needed to make the template below compile
}
template <typename Container>
void llama_model_saver::add_kv(const enum llm_kv key, const Container & value, const bool per_layer) {
const size_t n_values = per_layer ? size_t(model.hparams.n_layer) : value.size();
GGML_ASSERT(n_values <= value.size());
if (n_values == 0) {
return;
}
if (per_layer) {
bool all_values_the_same = true;
for (size_t i = 1; i < n_values; ++i) {
if (value[i] != value[0]) {
all_values_the_same = false;
break;
}
}
if (all_values_the_same) {
add_kv(key, value[0]);
return;
}
}
if (std::is_same<typename Container::value_type, uint8_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT8, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, int8_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT8, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, uint32_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT32, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, int32_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT32, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, float>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_FLOAT32, value.data(), n_values);
} else if (std::is_same<Container, std::string>::value) {
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), reinterpret_cast<const char *>(value.data()));
} else {
GGML_ABORT("fatal error");
}
}
void llama_model_saver::add_kv(const enum llm_kv key, const std::vector<std::string> & value) {
std::vector<const char *> tmp(value.size());
for (size_t i = 0; i < value.size(); ++i) {
tmp[i] = value[i].c_str();
}
gguf_set_arr_str(gguf_ctx, llm_kv(key).c_str(), tmp.data(), tmp.size());
}
void llama_model_saver::add_tensor(const struct ggml_tensor * tensor) {
if (!tensor) {
return;
}
if (gguf_find_tensor(gguf_ctx, tensor->name) >= 0) {
GGML_ASSERT(std::string(tensor->name) == "rope_freqs.weight"); // FIXME
return;
}
gguf_add_tensor(gguf_ctx, tensor);
}
void llama_model_saver::add_kv_from_model() {
const llama_hparams & hparams = model.hparams;
const llama_vocab & vocab = model.vocab;
const int32_t n_vocab = vocab.n_tokens();
std::vector<std::string> tokens(n_vocab);
std::vector<float> scores(n_vocab);
std::vector<int32_t> token_types(n_vocab);
for (int32_t id = 0; id < n_vocab; ++id) {
const llama_vocab::token_data & token_data = vocab.get_token_data(id);
tokens[id] = token_data.text;
scores[id] = token_data.score;
switch(token_data.attr) {
case LLAMA_TOKEN_ATTR_UNKNOWN: token_types[id] = LLAMA_TOKEN_TYPE_UNKNOWN; break;
case LLAMA_TOKEN_ATTR_UNUSED: token_types[id] = LLAMA_TOKEN_TYPE_UNUSED; break;
case LLAMA_TOKEN_ATTR_NORMAL: token_types[id] = LLAMA_TOKEN_TYPE_NORMAL; break;
case LLAMA_TOKEN_ATTR_CONTROL: token_types[id] = LLAMA_TOKEN_TYPE_CONTROL; break;
case LLAMA_TOKEN_ATTR_USER_DEFINED: token_types[id] = LLAMA_TOKEN_TYPE_USER_DEFINED; break;
case LLAMA_TOKEN_ATTR_BYTE: token_types[id] = LLAMA_TOKEN_TYPE_BYTE; break;
case LLAMA_TOKEN_ATTR_UNDEFINED:
default: token_types[id] = LLAMA_TOKEN_TYPE_UNDEFINED; break;
}
}
// add_kv(LLM_KV_GENERAL_TYPE, ???);
add_kv(LLM_KV_GENERAL_ARCHITECTURE, model.arch_name());
// add_kv(LLM_KV_GENERAL_QUANTIZATION_VERSION, ???);
// add_kv(LLM_KV_GENERAL_ALIGNMENT, ???);
add_kv(LLM_KV_GENERAL_NAME, model.name);
// add_kv(LLM_KV_GENERAL_AUTHOR, ???);
// add_kv(LLM_KV_GENERAL_VERSION, ???);
// add_kv(LLM_KV_GENERAL_URL, ???);
// add_kv(LLM_KV_GENERAL_DESCRIPTION, ???);
// add_kv(LLM_KV_GENERAL_LICENSE, ???);
// add_kv(LLM_KV_GENERAL_SOURCE_URL, ???);
// add_kv(LLM_KV_GENERAL_SOURCE_HF_REPO, ???);
add_kv(LLM_KV_VOCAB_SIZE, vocab.n_tokens());
add_kv(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
add_kv(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
add_kv(LLM_KV_BLOCK_COUNT, hparams.n_layer);
add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
add_kv(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, true);
add_kv(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
add_kv(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
add_kv(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
// add_kv(LLM_KV_TENSOR_DATA_LAYOUT, ???);
add_kv(LLM_KV_EXPERT_COUNT, hparams.n_expert);
add_kv(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
add_kv(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
add_kv(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
add_kv(LLM_KV_POOLING_TYPE, uint32_t(hparams.pooling_type));
add_kv(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
add_kv(LLM_KV_DECODER_START_TOKEN_ID, hparams.dec_start_token_id);
add_kv(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping);
add_kv(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping);
add_kv(LLM_KV_SWIN_NORM, hparams.swin_norm);
add_kv(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers);
add_kv(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
add_kv(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
add_kv(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
add_kv(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
add_kv(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, true);
add_kv(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, true);
add_kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
add_kv(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
add_kv(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k);
add_kv(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v);
add_kv(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
add_kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
add_kv(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
add_kv(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
add_kv(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
add_kv(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
add_kv(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
add_kv(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
const float rope_scaling_factor = hparams.rope_freq_scale_train == 1.0f ? 0.0f : 1.0f/hparams.rope_freq_scale_train;
add_kv(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot);
add_kv(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train);
// add_kv(LLM_KV_ROPE_SCALE_LINEAR, rope_scaling_factor); // old name
add_kv(LLM_KV_ROPE_SCALING_TYPE, llama_rope_scaling_type_name(hparams.rope_scaling_type_train));
add_kv(LLM_KV_ROPE_SCALING_FACTOR, rope_scaling_factor);
add_kv(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor);
add_kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn);
add_kv(LLM_KV_ROPE_SCALING_FINETUNED, hparams.rope_finetuned);
add_kv(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
// TODO: implement split file support
// add_kv(LLM_KV_SPLIT_NO, ???);
// add_kv(LLM_KV_SPLIT_COUNT, ???);
// add_kv(LLM_KV_SPLIT_TENSORS_COUNT, ???);
add_kv(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
add_kv(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
add_kv(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
add_kv(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
add_kv(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms);
add_kv(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
add_kv(LLM_KV_TOKENIZER_MODEL, vocab.get_tokenizer_model());
add_kv(LLM_KV_TOKENIZER_PRE, vocab.get_tokenizer_pre());
add_kv(LLM_KV_TOKENIZER_LIST, tokens);
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE, token_types);
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, vocab.n_token_types());
add_kv(LLM_KV_TOKENIZER_SCORES, scores);
add_kv(LLM_KV_TOKENIZER_MERGES, vocab.get_bpe_merges());
// FIXME llama_token is type i32 but when reading in a GGUF file u32 is expected, not an issue for writing though
add_kv(LLM_KV_TOKENIZER_BOS_ID, uint32_t(vocab.token_bos()));
add_kv(LLM_KV_TOKENIZER_EOS_ID, uint32_t(vocab.token_eos()));
add_kv(LLM_KV_TOKENIZER_EOT_ID, uint32_t(vocab.token_eot()));
add_kv(LLM_KV_TOKENIZER_EOM_ID, uint32_t(vocab.token_eom()));
add_kv(LLM_KV_TOKENIZER_UNK_ID, uint32_t(vocab.token_unk()));
add_kv(LLM_KV_TOKENIZER_SEP_ID, uint32_t(vocab.token_sep()));
add_kv(LLM_KV_TOKENIZER_PAD_ID, uint32_t(vocab.token_pad()));
// add_kv(LLM_KV_TOKENIZER_CLS_ID, uint32_t(vocab.token_bos())); // deprecated
// add_kv(LLM_KV_TOKENIZER_MASK_ID, ???);
add_kv(LLM_KV_TOKENIZER_ADD_BOS, vocab.get_add_bos());
add_kv(LLM_KV_TOKENIZER_ADD_EOS, vocab.get_add_eos());
add_kv(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.get_add_space_prefix());
add_kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.get_remove_extra_whitespaces());
add_kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, vocab.get_precompiled_charsmap());
// add_kv(LLM_KV_TOKENIZER_HF_JSON, ???);
// add_kv(LLM_KV_TOKENIZER_RWKV, ???);
add_kv(LLM_KV_TOKENIZER_FIM_PRE_ID, uint32_t(vocab.token_fim_pre()));
add_kv(LLM_KV_TOKENIZER_FIM_SUF_ID, uint32_t(vocab.token_fim_suf()));
add_kv(LLM_KV_TOKENIZER_FIM_MID_ID, uint32_t(vocab.token_fim_mid()));
add_kv(LLM_KV_TOKENIZER_FIM_PAD_ID, uint32_t(vocab.token_fim_pad()));
add_kv(LLM_KV_TOKENIZER_FIM_REP_ID, uint32_t(vocab.token_fim_rep()));
add_kv(LLM_KV_TOKENIZER_FIM_SEP_ID, uint32_t(vocab.token_fim_sep()));
// TODO: implement LoRA support
// add_kv(LLM_KV_ADAPTER_TYPE, ???);
// add_kv(LLM_KV_ADAPTER_LORA_ALPHA, ???);
// deprecated
// add_kv(LLM_KV_TOKENIZER_PREFIX_ID, ???);
// add_kv(LLM_KV_TOKENIZER_SUFFIX_ID, ???);
// add_kv(LLM_KV_TOKENIZER_MIDDLE_ID, ???);
}
void llama_model_saver::add_tensors_from_model() {
if (std::string(model.output->name) != std::string(model.tok_embd->name)) {
add_tensor(model.tok_embd); // some models use the same tensor for tok_embd and output
}
add_tensor(model.type_embd);
add_tensor(model.pos_embd);
add_tensor(model.tok_norm);
add_tensor(model.tok_norm_b);
add_tensor(model.output_norm);
add_tensor(model.output_norm_b);
add_tensor(model.output);
add_tensor(model.output_b);
add_tensor(model.output_norm_enc);
add_tensor(model.cls);
add_tensor(model.cls_b);
add_tensor(model.cls_out);
add_tensor(model.cls_out_b);
for (const struct llama_layer & layer : model.layers) {
for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
add_tensor(reinterpret_cast<const struct ggml_tensor * const *>(&layer)[i]);
}
}
}
void llama_model_saver::save(const std::string & path_model) {
gguf_write_to_file(gguf_ctx, path_model.c_str(), false);
}

37
llama/llama.cpp/src/llama-model-saver.h vendored Normal file
View File

@ -0,0 +1,37 @@
#pragma once
#include "llama.h"
#include "llama-arch.h"
#include <vector>
struct llama_model_saver {
struct gguf_context * gguf_ctx = nullptr;
const struct llama_model & model;
const struct LLM_KV llm_kv;
llama_model_saver(const struct llama_model & model);
~llama_model_saver();
void add_kv(enum llm_kv key, uint32_t value);
void add_kv(enum llm_kv key, int32_t value);
void add_kv(enum llm_kv key, float value);
void add_kv(enum llm_kv key, bool value);
void add_kv(enum llm_kv key, const char * value);
[[noreturn]]
void add_kv(enum llm_kv key, char value); // needed to make the template below compile
template <typename Container>
void add_kv(enum llm_kv key, const Container & value, bool per_layer = false);
void add_kv(enum llm_kv key, const std::vector<std::string> & value);
void add_tensor(const struct ggml_tensor * tensor);
void add_kv_from_model();
void add_tensors_from_model();
void save(const std::string & path_model);
};

View File

@ -40,6 +40,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_335M: return "335M"; case LLM_TYPE_335M: return "335M";
case LLM_TYPE_410M: return "410M"; case LLM_TYPE_410M: return "410M";
case LLM_TYPE_450M: return "450M"; case LLM_TYPE_450M: return "450M";
case LLM_TYPE_475M: return "475M";
case LLM_TYPE_770M: return "770M"; case LLM_TYPE_770M: return "770M";
case LLM_TYPE_780M: return "780M"; case LLM_TYPE_780M: return "780M";
case LLM_TYPE_0_5B: return "0.5B"; case LLM_TYPE_0_5B: return "0.5B";
@ -79,6 +80,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_236B: return "236B"; case LLM_TYPE_236B: return "236B";
case LLM_TYPE_290B: return "290B"; case LLM_TYPE_290B: return "290B";
case LLM_TYPE_314B: return "314B"; case LLM_TYPE_314B: return "314B";
case LLM_TYPE_405B: return "405B";
case LLM_TYPE_671B: return "671B"; case LLM_TYPE_671B: return "671B";
case LLM_TYPE_SMALL: return "0.1B"; case LLM_TYPE_SMALL: return "0.1B";
case LLM_TYPE_MEDIUM: return "0.4B"; case LLM_TYPE_MEDIUM: return "0.4B";
@ -115,6 +117,10 @@ static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_
{ LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" }, { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
}; };
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
}
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
if (kv.second == name) { if (kv.second == name) {
@ -297,6 +303,10 @@ static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & de
// add extra buffer types, only if no GPU device is present // add extra buffer types, only if no GPU device is present
// ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094 // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (cpu_dev == nullptr) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev); auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t) auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts"); ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
@ -423,7 +433,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
// get general kv // get general kv
ml.get_key(LLM_KV_GENERAL_NAME, name, false); ml.get_key(LLM_KV_GENERAL_NAME, name, false);
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab, false);
// everything past this point is not vocab-related // everything past this point is not vocab-related
if (hparams.vocab_only) { if (hparams.vocab_only) {
@ -435,7 +444,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false);
if (arch == LLM_ARCH_WAVTOKENIZER_DEC) { if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features); ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
@ -459,11 +467,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0); std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0); std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0); std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false); ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false); ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
// n_head_kv is optional, default to n_head // n_head_kv is optional, default to n_head
hparams.n_head_kv_arr = hparams.n_head_arr; hparams.n_head_kv_arr = hparams.n_head_arr;
@ -516,7 +522,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_MLLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) { if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
if (hparams.n_rot != hparams.n_embd_head_k) { if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k)); throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
} }
@ -579,22 +585,13 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.use_kq_norm = false; hparams.use_kq_norm = false;
} }
} break; } break;
case LLM_ARCH_MLLAMA:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 40: type = LLM_TYPE_11B; break;
case 100: type = LLM_TYPE_90B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_DECI: case LLM_ARCH_DECI:
{ {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) { switch (hparams.n_layer) {
case 32: type = LLM_TYPE_7B; break; case 32: type = LLM_TYPE_7B; break;
case 80: type = LLM_TYPE_70B; break; case 80: type = LLM_TYPE_70B; break;
case 162: type = LLM_TYPE_405B; break;
default: type = LLM_TYPE_UNKNOWN; default: type = LLM_TYPE_UNKNOWN;
} }
} break; } break;
@ -721,7 +718,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0); ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
if (hparams.n_layer == 12 && hparams.n_embd == 768) { if (hparams.n_layer == 12 && hparams.n_embd == 768) {
type = LLM_TYPE_137M; if (arch == LLM_ARCH_NOMIC_BERT) {
type = LLM_TYPE_137M;
} else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
type = LLM_TYPE_475M;
}
} }
} break; } break;
case LLM_ARCH_BLOOM: case LLM_ARCH_BLOOM:
@ -782,6 +783,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
// fall through // fall through
case LLM_ARCH_QWEN2: case LLM_ARCH_QWEN2:
{ {
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) { switch (hparams.n_layer) {
case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break; case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
@ -1505,6 +1507,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
} }
ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (cpu_dev == nullptr) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0); const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1); const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev { auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
@ -1576,7 +1581,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const int64_t n_embd_head_v = hparams.n_embd_head_v; const int64_t n_embd_head_v = hparams.n_embd_head_v;
const int64_t n_ff = hparams.n_ff(); const int64_t n_ff = hparams.n_ff();
const int64_t n_embd_gqa = n_embd_v_gqa; const int64_t n_embd_gqa = n_embd_v_gqa;
const int64_t n_vocab = hparams.n_vocab; const int64_t n_vocab = vocab.n_tokens();
const int64_t n_token_types = vocab.n_token_types(); const int64_t n_token_types = vocab.n_token_types();
const int64_t n_rot = hparams.n_rot; const int64_t n_rot = hparams.n_rot;
const int64_t n_expert = hparams.n_expert; const int64_t n_expert = hparams.n_expert;
@ -1672,8 +1677,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) { for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
std::regex pattern(overrides->pattern); std::regex pattern(overrides->pattern);
if (std::regex_search(tensor_name, pattern)) { if (std::regex_search(tensor_name, pattern)) {
LLAMA_LOG_DEBUG("tensor %s buffer type overriden to %s\n", tensor_name.c_str(), ggml_backend_buft_name(overrides->buft));
buft = overrides->buft; buft = overrides->buft;
LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
tensor_name.c_str(),
ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
ggml_backend_buft_name(buft));
break; break;
} }
} }
@ -1690,6 +1698,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
auto * buft_dev = ggml_backend_buft_get_device(buft); auto * buft_dev = ggml_backend_buft_get_device(buft);
if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) { if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error("no CPU backend found");
}
buft = ggml_backend_dev_buffer_type(cpu_dev); buft = ggml_backend_dev_buffer_type(cpu_dev);
} }
@ -1829,52 +1840,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
} }
} }
} break; } break;
case LLM_ARCH_MLLAMA:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8}, 0);
// output
{
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
if (hparams.cross_attention_layers(i)) {
layer.cross_attn_k_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128}, 0);
layer.cross_attn_k_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024}, 0);
layer.cross_attn_o_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd}, 0);
layer.cross_attn_q_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128}, 0);
layer.cross_attn_q_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd}, 0);
layer.cross_attn_v_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024}, 0);
layer.cross_attn_attn_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1}, 0);
layer.cross_attn_mlp_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1}, 0);
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
} else {
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
}
} break;
case LLM_ARCH_DECI: case LLM_ARCH_DECI:
{ {
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -1917,7 +1882,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (n_ff > 0) {
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
}
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
@ -1927,9 +1894,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
} }
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); if (n_ff > 0) {
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
// optional MLP bias // optional MLP bias
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
@ -3573,7 +3542,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
// output // output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) { for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i]; auto & layer = layers[i];
@ -4206,6 +4179,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
if (!dev) { if (!dev) {
// FIXME: workaround for CPU backend buft having a NULL device // FIXME: workaround for CPU backend buft having a NULL device
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
} }
ggml_backend_dev_props props; ggml_backend_dev_props props;
ggml_backend_dev_get_props(dev, &props); ggml_backend_dev_get_props(dev, &props);
@ -4335,7 +4311,7 @@ uint64_t llama_model::n_elements() const {
} }
void llama_model::print_info() const { void llama_model::print_info() const {
const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train); const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) { auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
bool is_var = false; bool is_var = false;
@ -4396,7 +4372,7 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn); LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type); LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type); LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type); LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn); LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
@ -4543,6 +4519,19 @@ const ggml_tensor * llama_model::get_tensor(const char * name) const {
return it->second; return it->second;
} }
ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
// choose long/short freq factors based on the context size
if (layers[il].rope_freqs != nullptr) {
return layers[il].rope_freqs;
}
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
return layers[il].rope_long;
}
return layers[il].rope_short;
}
struct llm_build_llama : public llm_graph_context { struct llm_build_llama : public llm_graph_context {
llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
@ -4583,7 +4572,7 @@ struct llm_build_llama : public llm_graph_context {
// self-attention // self-attention
{ {
// rope freq factors for llama3; may return nullptr for llama2 and other models // rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them // compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -4767,246 +4756,6 @@ struct llm_build_llama : public llm_graph_context {
} }
}; };
struct llm_build_mllama: public llm_graph_context {
llm_build_mllama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * inpCAS;
inpL = build_inp_embd(model.tok_embd);
inpCAS = build_inp_cross_attn_state();
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_unified();
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (hparams.cross_attention_layers(il)) {
if (!ubatch.embd && !cparams.cross_attn) {
continue;
}
// cross attention layer
ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
cb(Qcur, "Qcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
cb(Qcur, "Qcur", il);
Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
cb(Qcur, "Qcur", il);
Qcur = build_norm(Qcur, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur, * Vcur;
if (ubatch.embd) {
Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
cb(Kcur, "Kcur", il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
cb(Kcur, "Kcur", il);
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
cb(Kcur, "Kcur", il);
Kcur = build_norm(Kcur, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur", il);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self->k_l[il]));
Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
cb(Vcur, "Vcur", il);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
cb(Vcur, "Vcur", il);
Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
cb(Vcur, "Vcur", il);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self->v_l[il]));
} else {
Kcur = ggml_view_tensor(ctx0, kv_self->k_l[il]);
cb(Kcur, "Kcur (view)", il);
Vcur = ggml_view_tensor(ctx0, kv_self->v_l[il]);
cb(Vcur, "Vcur (view)", il);
}
struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
cb(kq, "kq", il);
// TODO: apply causal masks
struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
cb(kq_soft_max, "kq_soft_max", il);
Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
cb(Vcur, "Vcur", il);
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
cb(kqv, "kqv", il);
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il);
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
cb(cur, "kqv_merged_cont", il);
cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
cb(cur, "cur", il);
// TODO: do this in place once?
cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
// TODO: do this inplace once?
cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
} else {
// self attention layer
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_deci : public llm_graph_context { struct llm_build_deci : public llm_graph_context {
llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
@ -5029,6 +4778,7 @@ struct llm_build_deci : public llm_graph_context {
ggml_tensor * inpSA = inpL; ggml_tensor * inpSA = inpL;
const int64_t n_head_kv = hparams.n_head_kv(il); const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head = hparams.n_head(il); const int64_t n_head = hparams.n_head(il);
const int64_t n_ff = hparams.n_ff(il);
if (n_head == 0) { if (n_head == 0) {
// attention-free layer of Llama-3_1-Nemotron-51B // attention-free layer of Llama-3_1-Nemotron-51B
@ -5048,7 +4798,7 @@ struct llm_build_deci : public llm_graph_context {
} else if (n_head > 0) { } else if (n_head > 0) {
// self-attention // self-attention
// rope freq factors for llama3; may return nullptr for llama2 and other models // rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them // compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -5104,6 +4854,11 @@ struct llm_build_deci : public llm_graph_context {
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
} }
// FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
if (n_ff == 0) {
continue;
}
// For Granite architecture // For Granite architecture
if (hparams.f_residual_scale) { if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
@ -7530,7 +7285,7 @@ struct llm_build_phi3 : public llm_graph_context {
// self-attention // self-attention
{ {
// rope freq factors for 128k context // rope freq factors for 128k context
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor* attn_norm_output = build_norm(inpL, ggml_tensor* attn_norm_output = build_norm(inpL,
model.layers[il].attn_norm, model.layers[il].attn_norm,
@ -8282,7 +8037,7 @@ struct llm_build_minicpm3 : public llm_graph_context {
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL; ggml_tensor * inpSA = inpL;
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// norm // norm
cur = build_norm(inpL, cur = build_norm(inpL,
@ -9049,7 +8804,7 @@ struct llm_build_mamba : public llm_graph_context {
ggml_tensor * state_mask, ggml_tensor * state_mask,
const llama_ubatch & ubatch, const llama_ubatch & ubatch,
int il) const { int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory); const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto kv_head = kv_self->head; const auto kv_head = kv_self->head;
@ -9350,7 +9105,7 @@ struct llm_build_cohere2 : public llm_graph_context {
// self-attention // self-attention
{ {
// rope freq factors for 128k context // rope freq factors for 128k context
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them // compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -10288,7 +10043,7 @@ struct llm_build_deepseek : public llm_graph_context {
// self-attention // self-attention
{ {
// rope freq factors for llama3; may return nullptr for llama2 and other models // rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them // compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -11652,7 +11407,7 @@ struct llm_build_exaone : public llm_graph_context {
// self-attention // self-attention
{ {
// rope freq factors for llama3; may return nullptr for llama2 and other models // rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them // compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -11797,7 +11552,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
ggml_tensor * state_mask, ggml_tensor * state_mask,
const llama_ubatch & ubatch, const llama_ubatch & ubatch,
int il) const { int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory); const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_tokens = ubatch.n_tokens; const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs; const auto n_seqs = ubatch.n_seqs;
@ -12193,7 +11948,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
ggml_tensor *& first_layer_value, ggml_tensor *& first_layer_value,
const llama_ubatch & ubatch, const llama_ubatch & ubatch,
int il) const { int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory); const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_tokens = ubatch.n_tokens; const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs; const auto n_seqs = ubatch.n_seqs;
@ -12741,7 +12496,7 @@ struct llm_build_solar : public llm_graph_context {
// self-attention // self-attention
{ {
// rope freq factors for llama3; may return nullptr for llama2 and other models // rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them // compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -13192,7 +12947,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
// self-attention // self-attention
{ {
// rope freq factors for llama3; may return nullptr for llama2 and other models // rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them // compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@ -13312,36 +13067,46 @@ struct llm_build_bailingmoe : public llm_graph_context {
} }
}; };
llama_memory_i * llama_model::create_memory() const { llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
llama_memory_i * res; llama_memory_i * res;
switch (arch) { switch (arch) {
case LLM_ARCH_BERT:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
res = nullptr;
} break;
case LLM_ARCH_MAMBA: case LLM_ARCH_MAMBA:
case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6:
case LLM_ARCH_RWKV6QWEN2: case LLM_ARCH_RWKV6QWEN2:
case LLM_ARCH_RWKV7: case LLM_ARCH_RWKV7:
case LLM_ARCH_ARWKV7: case LLM_ARCH_ARWKV7:
{ {
res = new llama_kv_cache_unified(hparams, { res = new llama_kv_cache_recurrent(
/*.get_rope_factors =*/ nullptr *this,
}); GGML_TYPE_F32,
GGML_TYPE_F32,
cparams.offload_kqv,
std::max((uint32_t) 1, cparams.n_seq_max));
} break; } break;
default: default:
{ {
res = new llama_kv_cache_unified(hparams, { const auto padding = llama_kv_cache_unified::get_padding(cparams);
/*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
// choose long/short freq factors based on the context size
if (layers[il].rope_freqs != nullptr) {
return layers[il].rope_freqs;
}
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) { cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
return layers[il].rope_long;
}
return layers[il].rope_short; LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
}
}); res = new llama_kv_cache_unified(
*this,
params.type_k,
params.type_v,
!cparams.flash_attn,
cparams.offload_kqv,
cparams.n_ctx,
padding);
} }
} }
@ -13363,10 +13128,6 @@ llm_graph_result_ptr llama_model::build_graph(
{ {
llm = std::make_unique<llm_build_llama>(*this, params, gf); llm = std::make_unique<llm_build_llama>(*this, params, gf);
} break; } break;
case LLM_ARCH_MLLAMA:
{
llm = std::make_unique<llm_build_mllama>(*this, params, gf);
} break;
case LLM_ARCH_DECI: case LLM_ARCH_DECI:
{ {
llm = std::make_unique<llm_build_deci>(*this, params, gf); llm = std::make_unique<llm_build_deci>(*this, params, gf);
@ -13728,12 +13489,9 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values // use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA: case LLM_ARCH_LLAMA:
case LLM_ARCH_LLAMA4: case LLM_ARCH_LLAMA4:
case LLM_ARCH_MLLAMA:
case LLM_ARCH_DECI: case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN: case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER: case LLM_ARCH_STARCODER:
case LLM_ARCH_PLAMO:
case LLM_ARCH_ORION:
case LLM_ARCH_INTERNLM2: case LLM_ARCH_INTERNLM2:
case LLM_ARCH_MINICPM: case LLM_ARCH_MINICPM:
case LLM_ARCH_XVERSE: case LLM_ARCH_XVERSE:
@ -13772,6 +13530,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_PHI2: case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3: case LLM_ARCH_PHI3:
case LLM_ARCH_PHIMOE: case LLM_ARCH_PHIMOE:
case LLM_ARCH_PLAMO:
case LLM_ARCH_GEMMA: case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2: case LLM_ARCH_GEMMA2:
case LLM_ARCH_GEMMA3: case LLM_ARCH_GEMMA3:
@ -13779,6 +13538,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_OPENELM: case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX: case LLM_ARCH_GPTNEOX:
case LLM_ARCH_CODESHELL: case LLM_ARCH_CODESHELL:
case LLM_ARCH_ORION:
case LLM_ARCH_NEMOTRON: case LLM_ARCH_NEMOTRON:
case LLM_ARCH_EXAONE: case LLM_ARCH_EXAONE:
case LLM_ARCH_MINICPM3: case LLM_ARCH_MINICPM3:
@ -13851,6 +13611,14 @@ const char * llama_model_chat_template(const llama_model * model, const char * n
: LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE); : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
const auto & it = model->gguf_kv.find(key); const auto & it = model->gguf_kv.find(key);
if (it == model->gguf_kv.end()) { if (it == model->gguf_kv.end()) {
// one-off fix for very popular models (so we are not flooded with issues)
// do not extend this list unless absolutely necessary
// Mistral-Small-2503 does not have built-in chat template
llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
if (pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
return "mistral-v7-tekken";
}
return nullptr; return nullptr;
} }

View File

@ -11,7 +11,6 @@
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include <stdexcept>
struct llama_cparams; struct llama_cparams;
struct llama_ubatch; struct llama_ubatch;
@ -37,6 +36,7 @@ enum llm_type {
LLM_TYPE_335M, LLM_TYPE_335M,
LLM_TYPE_410M, LLM_TYPE_410M,
LLM_TYPE_450M, LLM_TYPE_450M,
LLM_TYPE_475M,
LLM_TYPE_770M, LLM_TYPE_770M,
LLM_TYPE_780M, LLM_TYPE_780M,
LLM_TYPE_0_5B, LLM_TYPE_0_5B,
@ -74,10 +74,10 @@ enum llm_type {
LLM_TYPE_40B, LLM_TYPE_40B,
LLM_TYPE_65B, LLM_TYPE_65B,
LLM_TYPE_70B, LLM_TYPE_70B,
LLM_TYPE_90B,
LLM_TYPE_236B, LLM_TYPE_236B,
LLM_TYPE_290B, LLM_TYPE_290B,
LLM_TYPE_314B, LLM_TYPE_314B,
LLM_TYPE_405B,
LLM_TYPE_671B, LLM_TYPE_671B,
LLM_TYPE_SMALL, LLM_TYPE_SMALL,
LLM_TYPE_MEDIUM, LLM_TYPE_MEDIUM,
@ -97,6 +97,8 @@ enum llm_type {
LLM_TYPE_235B_A22B, LLM_TYPE_235B_A22B,
}; };
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type);
struct llama_layer_posnet { struct llama_layer_posnet {
// resnet // resnet
struct ggml_tensor * norm1 = nullptr; struct ggml_tensor * norm1 = nullptr;
@ -316,16 +318,6 @@ struct llama_layer {
struct ggml_tensor * bskcn_tv = nullptr; struct ggml_tensor * bskcn_tv = nullptr;
// cross attention
struct ggml_tensor * cross_attn_k_norm = nullptr;
struct ggml_tensor * cross_attn_k_proj = nullptr;
struct ggml_tensor * cross_attn_o_proj = nullptr;
struct ggml_tensor * cross_attn_q_norm = nullptr;
struct ggml_tensor * cross_attn_q_proj = nullptr;
struct ggml_tensor * cross_attn_v_proj = nullptr;
struct ggml_tensor * cross_attn_attn_gate = nullptr;
struct ggml_tensor * cross_attn_mlp_gate = nullptr;
struct llama_layer_posnet posnet; struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext; struct llama_layer_convnext convnext;
@ -409,8 +401,11 @@ struct llama_model {
const struct ggml_tensor * get_tensor(const char * name) const; const struct ggml_tensor * get_tensor(const char * name) const;
ggml_tensor * get_rope_factors(uint32_t n_ctx_per_seq, int il) const;
// note: can mutate `cparams`
// TODO: move this to new llm_arch_model_i interface // TODO: move this to new llm_arch_model_i interface
llama_memory_i * create_memory() const; // TODO: params llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
// TODO: move this to new llm_arch_model_i interface // TODO: move this to new llm_arch_model_i interface
llm_graph_result_ptr build_graph( llm_graph_result_ptr build_graph(

View File

@ -519,7 +519,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
nthread = std::thread::hardware_concurrency(); nthread = std::thread::hardware_concurrency();
} }
// mmap consistently increases speed Linux, and also increases speed on Windows with // mmap consistently increases speed on Linux, and also increases speed on Windows with
// hot cache. It may cause a slowdown on macOS, possibly related to free memory. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
#if defined(__linux__) || defined(_WIN32) #if defined(__linux__) || defined(_WIN32)
constexpr bool use_mmap = true; constexpr bool use_mmap = true;
@ -529,7 +529,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
llama_model_kv_override * kv_overrides = nullptr; llama_model_kv_override * kv_overrides = nullptr;
if (params->kv_overrides) { if (params->kv_overrides) {
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides; auto * v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data(); kv_overrides = v->data();
} }
@ -639,9 +639,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
if (llama_model_has_encoder(&model)) { if (llama_model_has_encoder(&model)) {
n_attn_layer *= 3; n_attn_layer *= 3;
} }
if (qs.n_attention_wv != n_attn_layer) { GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
}
} }
size_t total_size_org = 0; size_t total_size_org = 0;

View File

@ -1750,23 +1750,35 @@ static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler *
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx; const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
if (ctx->n <= 0.0f || cur_p->size <= 1) {
return;
}
// find max logit and calculate mean // find max logit and calculate mean
float max = cur_p->data[0].logit; float max = cur_p->data[0].logit;
float logits_sum = 0; float logits_sum = 0;
size_t valid_count = 0;
for (size_t i = 0; i < cur_p->size; ++i) { for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].logit > max) { // Only count non-negative infinity values
max = cur_p->data[i].logit; if (cur_p->data[i].logit != -INFINITY) {
if (cur_p->data[i].logit > max) {
max = cur_p->data[i].logit;
}
logits_sum += cur_p->data[i].logit;
valid_count++;
} }
logits_sum += cur_p->data[i].logit;
} }
float mean = logits_sum/cur_p->size; float mean = valid_count > 0 ? logits_sum/valid_count : 0;
// calculate standard deviation // calculate standard deviation
float acc = 0; float acc = 0;
for (size_t i = 0; i < cur_p->size; ++i) { for (size_t i = 0; i < cur_p->size; ++i) {
acc += pow(cur_p->data[i].logit - mean, 2); // Skip -infinity in std calculation
if (cur_p->data[i].logit != -INFINITY) {
acc += pow(cur_p->data[i].logit - mean, 2);
}
} }
float std = sqrt(acc/cur_p->size); float std = valid_count > 0 ? sqrt(acc/valid_count) : 0;
//apply mask //apply mask
for (size_t i = 0; i < cur_p->size; ++i) { for (size_t i = 0; i < cur_p->size; ++i) {

View File

@ -1,5 +1,7 @@
#include "llama-vocab.h" #include "llama-vocab.h"
#include "ggml.h"
#include "gguf.h"
#include "llama-impl.h" #include "llama-impl.h"
#include "llama-model-loader.h" #include "llama-model-loader.h"
@ -415,6 +417,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"'(?:[sSdDmMtT]|[lL][lL]|[vV][eE]|[rR][eE])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+", "'(?:[sSdDmMtT]|[lL][lL]|[vV][eE]|[rR][eE])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
}; };
break; break;
case LLAMA_VOCAB_PRE_TYPE_SEED_CODER:
regex_exprs = {
// original regex from tokenizer.json
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\r\n]+|\\s*[\r\n]+|\\s+(?!\\S)|\\s+"
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\\r\\n]+|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
default: default:
// default regex for BPE tokenization pre-processing // default regex for BPE tokenization pre-processing
regex_exprs = { regex_exprs = {
@ -1227,6 +1236,9 @@ struct fragment_buffer_variant {
struct llama_vocab::impl { struct llama_vocab::impl {
uint32_t n_token_types = 0; // for BERT-style token types uint32_t n_token_types = 0; // for BERT-style token types
std::string tokenizer_model;
std::string tokenizer_pre;
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
@ -1362,9 +1374,6 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
// determine vocab type // determine vocab type
{ {
std::string tokenizer_model;
std::string tokenizer_pre;
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model); ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
@ -1459,7 +1468,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str()); const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) { if (precompiled_charsmap_keyidx != -1) {
size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx); const gguf_type pc_type = gguf_get_arr_type(ctx, precompiled_charsmap_keyidx);
const size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx); const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap); precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN #ifdef IS_BIG_ENDIAN
@ -1625,6 +1635,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "bailingmoe") { tokenizer_pre == "bailingmoe") {
pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE; pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
clean_spaces = false; clean_spaces = false;
} else if (
tokenizer_pre == "seed-coder") {
pre_type = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
clean_spaces = false;
} else { } else {
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__); LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
@ -2770,6 +2784,14 @@ void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
pimpl->load(ml, kv); pimpl->load(ml, kv);
} }
std::string llama_vocab::get_tokenizer_model() const {
return pimpl->tokenizer_model;
}
std::string llama_vocab::get_tokenizer_pre() const {
return pimpl->tokenizer_pre;
}
enum llama_vocab_type llama_vocab::get_type() const { enum llama_vocab_type llama_vocab::get_type() const {
return pimpl->type; return pimpl->type;
} }
@ -2992,6 +3014,20 @@ int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string
return it->second; return it->second;
} }
std::vector<std::string> llama_vocab::get_bpe_merges() const {
std::vector<std::string> result(pimpl->bpe_ranks.size());
for (const auto & pair : pimpl->bpe_ranks) {
result[pair.second] = pair.first.first + " " + pair.first.second;
}
return result;
}
std::vector<char> llama_vocab::get_precompiled_charsmap() const {
return pimpl->precompiled_charsmap;
}
int32_t llama_vocab::tokenize( int32_t llama_vocab::tokenize(
const char * text, const char * text,
int32_t text_len, int32_t text_len,

View File

@ -21,6 +21,9 @@ struct llama_vocab {
void load(llama_model_loader & ml, const LLM_KV & kv); void load(llama_model_loader & ml, const LLM_KV & kv);
std::string get_tokenizer_model() const;
std::string get_tokenizer_pre() const;
enum llama_vocab_type get_type() const; enum llama_vocab_type get_type() const;
enum llama_vocab_pre_type get_pre_type() const; enum llama_vocab_pre_type get_pre_type() const;
@ -80,6 +83,9 @@ struct llama_vocab {
int max_token_len() const; int max_token_len() const;
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const; int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
std::vector<std::string> get_bpe_merges() const;
std::vector<char> get_precompiled_charsmap() const;
int32_t tokenize( int32_t tokenize(
const char * text, const char * text,

View File

@ -4,6 +4,7 @@
#include "llama-mmap.h" #include "llama-mmap.h"
#include "llama-vocab.h" #include "llama-vocab.h"
#include "llama-model-loader.h" #include "llama-model-loader.h"
#include "llama-model-saver.h"
#include "llama-model.h" #include "llama-model.h"
#include "ggml.h" #include "ggml.h"
@ -253,6 +254,13 @@ struct llama_model * llama_model_load_from_splits(
return llama_model_load_from_file_impl(splits.front(), splits, params); return llama_model_load_from_file_impl(splits.front(), splits, params);
} }
void llama_model_save_to_file(const struct llama_model * model, const char * path_model) {
llama_model_saver ms(*model);
ms.add_kv_from_model();
ms.add_tensors_from_model();
ms.save(path_model);
}
// //
// chat templates // chat templates
// //
@ -338,3 +346,4 @@ const char * llama_print_system_info(void) {
return s.c_str(); return s.c_str();
} }

View File

@ -31,9 +31,7 @@
#define KEY_FEATURE_LAYER "clip.vision.feature_layer" #define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor" #define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
#define KEY_PROJ_TYPE "clip.projector_type" #define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
#define KEY_USE_GLU_MLP "clip.use_glu_mlp" // for qwen2.5vl
#define KEY_USE_RMS_NORM "clip.use_rms_norm" // for qwen2.5vl
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type" #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints" #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
@ -55,12 +53,16 @@
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s" #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s" #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s" #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_ATTN_K_NORM "%s.blk.%d.attn_k_norm.%s"
#define TN_ATTN_Q_NORM "%s.blk.%d.attn_q_norm.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s" #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s" #define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s" #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s" #define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s" #define TN_LN_1 "%s.blk.%d.ln1.%s" // layer norm
#define TN_LN_2 "%s.blk.%d.ln2.%s" #define TN_LN_2 "%s.blk.%d.ln2.%s" // layer norm
#define TN_LS_1 "%s.blk.%d.ls1.%s" // layer scale
#define TN_LS_2 "%s.blk.%d.ls2.%s" // layer scale
#define TN_LN_PRE "%s.pre_ln.%s" #define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s" #define TN_LN_POST "%s.post_ln.%s"
#define TN_LLAVA_PROJ "mm.%d.%s" #define TN_LLAVA_PROJ "mm.%d.%s"
@ -68,10 +70,14 @@
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s" #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s" #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline" #define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_NORM "mm.input_norm.weight"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3 #define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3 #define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
#define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3 #define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
#define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
#define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral #define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
#define TN_TOK_GLM_BOI "adapter.boi" // glm-edge (these embeddings are not in text model)
#define TN_TOK_GLM_EOI "adapter.eoi" // glm-edge (these embeddings are not in text model)
// mimicpmv // mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k" #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
@ -88,6 +94,9 @@
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s" #define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s" #define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
// align x to upper multiple of n
#define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
enum projector_type { enum projector_type {
PROJECTOR_TYPE_MLP, PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM, PROJECTOR_TYPE_MLP_NORM,
@ -100,6 +109,7 @@ enum projector_type {
PROJECTOR_TYPE_IDEFICS3, PROJECTOR_TYPE_IDEFICS3,
PROJECTOR_TYPE_PIXTRAL, PROJECTOR_TYPE_PIXTRAL,
PROJECTOR_TYPE_QWEN25VL, PROJECTOR_TYPE_QWEN25VL,
PROJECTOR_TYPE_INTERNVL,
PROJECTOR_TYPE_UNKNOWN, PROJECTOR_TYPE_UNKNOWN,
}; };
@ -114,6 +124,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_GEMMA3, "gemma3"}, { PROJECTOR_TYPE_GEMMA3, "gemma3"},
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"}, { PROJECTOR_TYPE_IDEFICS3, "idefics3"},
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"}, { PROJECTOR_TYPE_PIXTRAL, "pixtral"},
{ PROJECTOR_TYPE_INTERNVL, "internvl"},
}; };
static projector_type clip_projector_type_from_string(const std::string & str) { static projector_type clip_projector_type_from_string(const std::string & str) {
@ -228,6 +239,15 @@ struct clip_image_u8_batch {
struct clip_image_f32_batch { struct clip_image_f32_batch {
std::vector<clip_image_f32_ptr> entries; std::vector<clip_image_f32_ptr> entries;
clip_image_f32_batch clone() const {
clip_image_f32_batch new_batch;
new_batch.entries.reserve(entries.size());
for (const auto & entry : entries) {
new_batch.entries.emplace_back(new clip_image_f32(*entry));
}
return new_batch;
}
}; };
// //

View File

@ -78,10 +78,10 @@ CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size); CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip); CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
CLIP_API struct clip_image_size * clip_image_size_init(); CLIP_API struct clip_image_size * clip_image_size_init(void);
CLIP_API struct clip_image_u8 * clip_image_u8_init (); CLIP_API struct clip_image_u8 * clip_image_u8_init (void);
CLIP_API struct clip_image_f32 * clip_image_f32_init(); CLIP_API struct clip_image_f32 * clip_image_f32_init(void);
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(void); // only used by libllava
// nx, ny are the output image dimensions // nx, ny are the output image dimensions
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny); CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);

View File

@ -2,6 +2,7 @@
#include "llava.h" #include "llava.h"
#include "llama.h" #include "llama.h"
#include "ggml-cpp.h"
#include <algorithm> #include <algorithm>
#include <cerrno> #include <cerrno>
@ -209,7 +210,11 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0); struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false); // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
ggml_build_forward_expand(gf, flatten); ggml_build_forward_expand(gf, flatten);
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
ggml_backend_ptr backend { ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr) };
GGML_ASSERT(backend != nullptr && "failed to initialize CPU backend");
ggml_backend_graph_compute(backend.get(), gf);
struct ggml_tensor* result = ggml_graph_node(gf, -1); struct ggml_tensor* result = ggml_graph_node(gf, -1);
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
@ -457,7 +462,7 @@ struct llava_embd_batch {
std::vector<llama_seq_id *> seq_ids; std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits; std::vector<int8_t> logits;
llama_batch batch; llama_batch batch;
llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) { llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens); pos .resize(n_tokens);
n_seq_id.resize(n_tokens); n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1); seq_ids .resize(n_tokens + 1);
@ -469,7 +474,6 @@ struct llava_embd_batch {
/*n_tokens =*/ n_tokens, /*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr, /*tokens =*/ nullptr,
/*embd =*/ embd, /*embd =*/ embd,
/*n_embd =*/ n_embd,
/*pos =*/ pos.data(), /*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(), /*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(), /*seq_id =*/ seq_ids.data(),
@ -493,7 +497,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
n_eval = n_batch; n_eval = n_batch;
} }
float * embd = image_embed->embed+i*n_embd; float * embd = image_embed->embed+i*n_embd;
llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0); llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
if (llama_decode(ctx_llama, llava_batch.batch)) { if (llama_decode(ctx_llama, llava_batch.batch)) {
LOG_ERR("%s : failed to eval\n", __func__); LOG_ERR("%s : failed to eval\n", __func__);
return false; return false;

View File

@ -1,4 +1,4 @@
package llava package mtmd
// #cgo CXXFLAGS: -std=c++11 // #cgo CXXFLAGS: -std=c++11
// #cgo CPPFLAGS: -I${SRCDIR}/../../include -I${SRCDIR}/../../common // #cgo CPPFLAGS: -I${SRCDIR}/../../include -I${SRCDIR}/../../common

Some files were not shown because too many files have changed in this diff Show More