localGPT/prompt_template_utils.py
PromptEngineer a49c29a0a1 Major code update to run_localGPT
This includes the following update.

- Support for GGUF models.
- Ability to enable/disable chat history
- Set parameters in constants.py
- Prompt Template for Llama-2 (this works well) and generic template for other models.
- Major rewrite of the main run_localGPT.py as run_localGPT_v2.py (This will replace the original version after testing by the community).
- and more :)
2023-09-13 01:04:40 -07:00

58 lines
2.2 KiB
Python

'''
This file implements prompt template for llama based models.
Modify the prompt template based on the model you select.
This seems to have significant impact on the output of the LLM.
'''
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
# this is specific to Llama-2.
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
Read the given context before answering questions and think step by step. If you can not answer a user question based on
the provided context, inform the user. Do not use any other information for answering user"""
def get_prompt_template(system_prompt=system_prompt, promptTemplate_type=None, history=False):
if promptTemplate_type=="llama":
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS
if history:
instruction = """
Context: {history} \n {context}
User: {question}"""
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
prompt = PromptTemplate(input_variables=["history", "context", "question"], template=prompt_template)
else:
instruction = """
Context: {context}
User: {question}"""
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
prompt = PromptTemplate(input_variables=["context", "question"], template=prompt_template)
else:
# change this based on the model you have selected.
if history:
prompt_template = system_prompt + """
Context: {history} \n {context}
User: {question}
Answer:"""
prompt = PromptTemplate(input_variables=["history", "context", "question"], template=prompt_template)
else:
prompt_template = system_prompt + """
Context: {context}
User: {question}
Answer:"""
prompt = PromptTemplate(input_variables=["context", "question"], template=prompt_template)
memory = ConversationBufferMemory(input_key="question", memory_key="history")
return prompt, memory,