add CUDA Dockerfile and .dockerignore

This commit is contained in:
Konrad Höffner 2023-07-25 15:55:55 +02:00
parent d4b0f75ac6
commit bcf7c98c0e
3 changed files with 35 additions and 0 deletions

4
.dockerignore Normal file
View File

@ -0,0 +1,4 @@
*
!*.py
!requirements.txt
!SOURCE_DOCUMENTS

22
Dockerfile Normal file
View File

@ -0,0 +1,22 @@
# syntax=docker/dockerfile:1
# Build as `docker build . -t localgpt`, requires BuildKit.
# Run as `docker run -it --mount src="$HOME/.cache",target=/root/.cache,type=bind --gpus=all localgpt`, requires Nvidia container toolkit.
FROM nvidia/cuda:11.7.1-runtime-ubuntu22.04
RUN apt-get update && apt-get install -y software-properties-common
RUN apt-get install -y g++-11 make python3 python-is-python3 pip
# only copy what's needed at every step to optimize layer cache
COPY ./requirements.txt .
# use BuildKit cache mount to drastically reduce redownloading from pip on repeated builds
RUN --mount=type=cache,target=/root/.cache pip install --timeout 100 -r requirements.txt
RUN --mount=type=cache,target=/root/.cache CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python
COPY SOURCE_DOCUMENTS ./SOURCE_DOCUMENTS
COPY ingest.py constants.py ./
# Docker BuildKit does not support GPU during *docker build* time right now, only during *docker run*.
# See <https://github.com/moby/buildkit/issues/1436>.
# If this changes in the future you can `docker build --build-arg device_type=cuda . -t localgpt` (+GPU argument to be determined).
ARG device_type=cpu
RUN --mount=type=cache,target=/root/.cache python ingest.py --device_type $device_type
COPY . .
ENV device_type=cuda
CMD python run_localGPT.py --device_type $device_type

View File

@ -38,6 +38,15 @@ If you want to use BLAS or Metal with [llama-cpp](<(https://github.com/abetlen/l
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install -r requirements.txt
```
## Docker
Installing the required packages for GPU inference on Nvidia GPUs, like gcc 11 and CUDA 11, may cause conflicts with other packages in your system.
As an alternative to Conda, you can use Docker with the provided Dockerfile.
It includes CUDA, your system just needs Docker, BuildKit, your Nvidia GPU driver and the Nvidia container toolkit.
Build as `docker build . -t localgpt`, requires BuildKit.
Docker BuildKit does not support GPU during *docker build* time right now, only during *docker run*.
Run as `docker run -it --mount src="$HOME/.cache",target=/root/.cache,type=bind --gpus=all localgpt`.
## Test dataset
This repo uses a [Constitution of USA ](https://constitutioncenter.org/media/files/constitution.pdf) as an example.