faceswap/plugins/extract/detect/_base.py
torzdf cd00859c40
model_refactor (#571) (#572)
* model_refactor (#571)

* original model to new structure

* IAE model to new structure

* OriginalHiRes to new structure

* Fix trainer for different resolutions

* Initial config implementation

* Configparse library added

* improved training data loader

* dfaker model working

* Add logging to training functions

* Non blocking input for cli training

* Add error handling to threads. Add non-mp queues to queue_handler

* Improved Model Building and NNMeta

* refactor lib/models

* training refactor. DFL H128 model Implementation

* Dfaker - use hashes

* Move timelapse. Remove perceptual loss arg

* Update INSTALL.md. Add logger formatting. Update Dfaker training

* DFL h128 partially ported

* Add mask to dfaker (#573)

* Remove old models. Add mask to dfaker

* dfl mask. Make masks selectable in config (#575)

* DFL H128 Mask. Mask type selectable in config.

* remove gan_v2_2

* Creating Input Size config for models

Creating Input Size config for models

Will be used downstream in converters.

Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes)

* Add mask loss options to config

* MTCNN options to config.ini. Remove GAN config. Update USAGE.md

* Add sliders for numerical values in GUI

* Add config plugins menu to gui. Validate config

* Only backup model if loss has dropped. Get training working again

* bugfixes

* Standardise loss printing

* GUI idle cpu fixes. Graph loss fix.

* mutli-gpu logging bugfix

* Merge branch 'staging' into train_refactor

* backup state file

* Crash protection: Only backup if both total losses have dropped

* Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes)

* Load and save model structure with weights

* Slight code update

* Improve config loader. Add subpixel opt to all models. Config to state

* Show samples... wrong input

* Remove AE topology. Add input/output shapes to State

* Port original_villain (birb/VillainGuy) model to faceswap

* Add plugin info to GUI config pages

* Load input shape from state. IAE Config options.

* Fix transform_kwargs.
Coverage to ratio.
Bugfix mask detection

* Suppress keras userwarnings.
Automate zoom.
Coverage_ratio to model def.

* Consolidation of converters & refactor (#574)

* Consolidation of converters & refactor

Initial Upload of alpha

Items
- consolidate convert_mased & convert_adjust into one converter
-add average color adjust to convert_masked
-allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size
-allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size
-eliminate redundant type conversions to avoid multiple round-off errors
-refactor loops for vectorization/speed
-reorganize for clarity & style changes

TODO
- bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now
- issues with mask border giving black ring at zero erosion .. investigate
- remove GAN ??
- test enlargment factors of umeyama standard face .. match to coverage factor
- make enlargment factor a model parameter
- remove convert_adjusted and referencing code when finished

* Update Convert_Masked.py

default blur size of 2 to match original...
description of enlargement tests
breakout matrxi scaling into def

* Enlargment scale as a cli parameter

* Update cli.py

* dynamic interpolation algorithm

Compute x & y scale factors from the affine matrix on the fly by QR decomp.
Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image

* input size
input size from config

* fix issues with <1.0 erosion

* Update convert.py

* Update Convert_Adjust.py

more work on the way to merginf

* Clean up help note on sharpen

* cleanup seamless

* Delete Convert_Adjust.py

* Update umeyama.py

* Update training_data.py

* swapping

* segmentation stub

* changes to convert.str

* Update masked.py

* Backwards compatibility fix for models
Get converter running

* Convert:
Move masks to class.
bugfix blur_size
some linting

* mask fix

* convert fixes

- missing facehull_rect re-added
- coverage to %
- corrected coverage logic
- cleanup of gui option ordering

* Update cli.py

* default for blur

* Update masked.py

* added preliminary low_mem version of OriginalHighRes model plugin

* Code cleanup, minor fixes

* Update masked.py

* Update masked.py

* Add dfl mask to convert

* histogram fix & seamless location

* update

* revert

* bugfix: Load actual configuration in gui

* Standardize nn_blocks

* Update cli.py

* Minor code amends

* Fix Original HiRes model

* Add masks to preview output for mask trainers
refactor trainer.__base.py

* Masked trainers converter support

* convert bugfix

* Bugfix: Converter for masked (dfl/dfaker) trainers

* Additional Losses (#592)

* initial upload

* Delete blur.py

* default initializer = He instead of Glorot (#588)

* Allow kernel_initializer to be overridable

* Add ICNR Initializer option for upscale on all models.

* Hopefully fixes RSoDs with original-highres model plugin

* remove debug line

* Original-HighRes model plugin Red Screen of Death fix, take #2

* Move global options to _base. Rename Villain model

* clipnorm and res block biases

* scale the end of res block

* res block

* dfaker pre-activation res

* OHRES pre-activation

* villain pre-activation

* tabs/space in nn_blocks

* fix for histogram with mask all set to zero

* fix to prevent two networks with same name

* GUI: Wider tooltips. Improve TQDM capture

* Fix regex bug

* Convert padding=48 to ratio of image size

* Add size option to alignments tool extract

* Pass through training image size to convert from model

* Convert: Pull training coverage from model

* convert: coverage, blur and erode to percent

* simplify matrix scaling

* ordering of sliders in train

* Add matrix scaling to utils. Use interpolation in lib.aligner transform

* masked.py Import get_matrix_scaling from utils

* fix circular import

* Update masked.py

* quick fix for matrix scaling

* testing thus for now

* tqdm regex capture bugfix

* Minor ammends

* blur size cleanup

* Remove coverage option from convert (Now cascades from model)

* Implement convert for all model types

* Add mask option and coverage option to all existing models

* bugfix for model loading on convert

* debug print removal

* Bugfix for masks in dfl_h128 and iae

* Update preview display. Add preview scaling to cli

* mask notes

* Delete training_data_v2.py

errant file

* training data variables

* Fix timelapse function

* Add new config items to state file for legacy purposes

* Slight GUI tweak

* Raise exception if problem with loaded model

* Add Tensorboard support (Logs stored in model directory)

* ICNR fix

* loss bugfix

* convert bugfix

* Move ini files to config folder. Make TensorBoard optional

* Fix training data for unbalanced inputs/outputs

* Fix config "none" test

* Keep helptext in .ini files when saving config from GUI

* Remove frame_dims from alignments

* Add no-flip and warp-to-landmarks cli options

* Revert OHR to RC4_fix version

* Fix lowmem mode on OHR model

* padding to variable

* Save models in parallel threads

* Speed-up of res_block stability

* Automated Reflection Padding

* Reflect Padding as a training option

Includes auto-calculation of proper padding shapes, input_shapes, output_shapes

Flag included in config now

* rest of reflect padding

* Move TB logging to cli. Session info to state file

* Add session iterations to state file

* Add recent files to menu. GUI code tidy up

* [GUI] Fix recent file list update issue

* Add correct loss names to TensorBoard logs

* Update live graph to use TensorBoard and remove animation

* Fix analysis tab. GUI optimizations

* Analysis Graph popup to Tensorboard Logs

* [GUI] Bug fix for graphing for models with hypens in name

* [GUI] Correctly split loss to tabs during training

* [GUI] Add loss type selection to analysis graph

* Fix store command name in recent files. Switch to correct tab on open

* [GUI] Disable training graph when 'no-logs' is selected

* Fix graphing race condition

* rename original_hires model to unbalanced
2019-02-09 18:35:12 +00:00

324 lines
12 KiB
Python

#!/usr/bin/env python3
""" Base class for Face Detector plugins
Plugins should inherit from this class
See the override methods for which methods are
required.
For each source frame, the plugin must pass a dict to finalize containing:
{"filename": <filename of source frame>,
"image": <source image>,
"detected_faces": <list of dlib.rectangles>}
"""
import logging
import os
import traceback
from io import StringIO
import cv2
import dlib
from math import sqrt
from lib.gpu_stats import GPUStats
from lib.utils import rotate_landmarks
from plugins.extract._config import Config
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
def get_config(plugin_name):
""" Return the config for the requested model """
return Config(plugin_name).config_dict
class Detector():
""" Detector object """
def __init__(self, loglevel, rotation=None):
logger.debug("Initializing %s: (rotation: %s)", self.__class__.__name__, rotation)
self.config = get_config(".".join(self.__module__.split(".")[-2:]))
self.loglevel = loglevel
self.cachepath = os.path.join(os.path.dirname(__file__), ".cache")
self.rotation = self.get_rotation_angles(rotation)
self.parent_is_pool = False
self.init = None
# The input and output queues for the plugin.
# See lib.queue_manager.QueueManager for getting queues
self.queues = {"in": None, "out": None}
# Path to model if required
self.model_path = self.set_model_path()
# Target image size for passing images through the detector
# Set to tuple of dimensions (x, y) or int of pixel count
self.target = None
# Approximate VRAM used for the set target. Used to calculate
# how many parallel processes / batches can be run.
# Be conservative to avoid OOM.
self.vram = None
# For detectors that support batching, this should be set to
# the calculated batch size that the amount of available VRAM
# will support. It is also used for holding the number of threads/
# processes for parallel processing plugins
self.batch_size = 1
logger.debug("Initialized _base %s", self.__class__.__name__)
# <<< OVERRIDE METHODS >>> #
# These methods must be overriden when creating a plugin
@staticmethod
def set_model_path():
""" path to data file/models
override for specific detector """
raise NotImplementedError()
def initialize(self, *args, **kwargs):
""" Inititalize the detector
Tasks to be run before any detection is performed.
Override for specific detector """
logger_init = kwargs["log_init"]
log_queue = kwargs["log_queue"]
logger_init(self.loglevel, log_queue)
logger.debug("initialize %s (PID: %s, args: %s, kwargs: %s)",
self.__class__.__name__, os.getpid(), args, kwargs)
self.init = kwargs.get("event", False)
self.queues["in"] = kwargs["in_queue"]
self.queues["out"] = kwargs["out_queue"]
def detect_faces(self, *args, **kwargs):
""" Detect faces in rgb image
Override for specific detector
Must return a list of dlib rects"""
try:
if not self.init:
self.initialize(*args, **kwargs)
except ValueError as err:
logger.error(err)
exit(1)
logger.debug("Detecting Faces (args: %s, kwargs: %s)", args, kwargs)
# <<< DETECTION WRAPPER >>> #
def run(self, *args, **kwargs):
""" Parent detect process.
This should always be called as the entry point so exceptions
are passed back to parent.
Do not override """
try:
self.detect_faces(*args, **kwargs)
except Exception: # pylint: disable=broad-except
logger.error("Caught exception in child process: %s", os.getpid())
# Display traceback if in initialization stage
if not self.init.is_set():
logger.exception("Traceback:")
tb_buffer = StringIO()
traceback.print_exc(file=tb_buffer)
logger.trace(tb_buffer.getvalue())
exception = {"exception": (os.getpid(), tb_buffer)}
self.queues["out"].put(exception)
exit(1)
# <<< FINALIZE METHODS>>> #
def finalize(self, output):
""" This should be called as the final task of each plugin
Performs fianl processing and puts to the out queue """
if isinstance(output, dict):
logger.trace("Item out: %s", {key: val
for key, val in output.items()
if key != "image"})
else:
logger.trace("Item out: %s", output)
self.queues["out"].put(output)
# <<< DETECTION IMAGE COMPILATION METHODS >>> #
def compile_detection_image(self, image, is_square, scale_up):
""" Compile the detection image """
scale = self.set_scale(image, is_square=is_square, scale_up=scale_up)
return [self.set_detect_image(image, scale), scale]
def set_scale(self, image, is_square=False, scale_up=False):
""" Set the scale factor for incoming image """
height, width = image.shape[:2]
if is_square:
if isinstance(self.target, int):
dims = (self.target ** 0.5, self.target ** 0.5)
self.target = dims
source = max(height, width)
target = max(self.target)
else:
if isinstance(self.target, tuple):
self.target = self.target[0] * self.target[1]
source = width * height
target = self.target
if scale_up or target < source:
scale = sqrt(target / source)
else:
scale = 1.0
logger.trace("Detector scale: %s", scale)
return scale
def set_detect_image(self, input_image, scale):
""" Convert the image to RGB and scale """
# pylint: disable=no-member
image = input_image[:, :, ::-1].copy()
if scale == 1.0:
return image
height, width = image.shape[:2]
interpln = cv2.INTER_LINEAR if scale > 1.0 else cv2.INTER_AREA
dims = (int(width * scale), int(height * scale))
if scale < 1.0:
logger.verbose("Resizing image from %sx%s to %s.",
width, height, "x".join(str(i) for i in dims))
image = cv2.resize(image, dims, interpolation=interpln)
return image
# <<< IMAGE ROTATION METHODS >>> #
@staticmethod
def get_rotation_angles(rotation):
""" Set the rotation angles. Includes backwards compatibility for the
'on' and 'off' options:
- 'on' - increment 90 degrees
- 'off' - disable
- 0 is prepended to the list, as whatever happens, we want to
scan the image in it's upright state """
rotation_angles = [0]
if not rotation or rotation.lower() == "off":
logger.debug("Not setting rotation angles")
return rotation_angles
if rotation.lower() == "on":
rotation_angles.extend(range(90, 360, 90))
else:
passed_angles = [int(angle)
for angle in rotation.split(",")]
if len(passed_angles) == 1:
rotation_step_size = passed_angles[0]
rotation_angles.extend(range(rotation_step_size,
360,
rotation_step_size))
elif len(passed_angles) > 1:
rotation_angles.extend(passed_angles)
logger.debug("Rotation Angles: %s", rotation_angles)
return rotation_angles
def rotate_image(self, image, angle):
""" Rotate the image by given angle and return
Image with rotation matrix """
if angle == 0:
return image, None
return self.rotate_image_by_angle(image, angle)
@staticmethod
def rotate_rect(d_rect, rotation_matrix):
""" Rotate a dlib rect based on the rotation_matrix"""
logger.trace("Rotating d_rectangle")
d_rect = rotate_landmarks(d_rect, rotation_matrix)
return d_rect
@staticmethod
def rotate_image_by_angle(image, angle,
rotated_width=None, rotated_height=None):
""" Rotate an image by a given angle.
From: https://stackoverflow.com/questions/22041699 """
logger.trace("Rotating image: (angle: %s, rotated_width: %s, rotated_height: %s)",
angle, rotated_width, rotated_height)
height, width = image.shape[:2]
image_center = (width/2, height/2)
rotation_matrix = cv2.getRotationMatrix2D( # pylint: disable=no-member
image_center, -1.*angle, 1.)
if rotated_width is None or rotated_height is None:
abs_cos = abs(rotation_matrix[0, 0])
abs_sin = abs(rotation_matrix[0, 1])
if rotated_width is None:
rotated_width = int(height*abs_sin + width*abs_cos)
if rotated_height is None:
rotated_height = int(height*abs_cos + width*abs_sin)
rotation_matrix[0, 2] += rotated_width/2 - image_center[0]
rotation_matrix[1, 2] += rotated_height/2 - image_center[1]
logger.trace("Rotated image: (rotation_matrix: %s", rotation_matrix)
return (cv2.warpAffine(image, # pylint: disable=no-member
rotation_matrix,
(rotated_width, rotated_height)),
rotation_matrix)
# << QUEUE METHODS >> #
def get_item(self):
""" Yield one item from the queue """
item = self.queues["in"].get()
if isinstance(item, dict):
logger.trace("Item in: %s", item["filename"])
else:
logger.trace("Item in: %s", item)
if item == "EOF":
logger.debug("In Queue Exhausted")
# Re-put EOF into queue for other threads
self.queues["in"].put(item)
return item
def get_batch(self):
""" Get items from the queue in batches of
self.batch_size
First item in output tuple indicates whether the
queue is exhausted.
Second item is the batch
Remember to put "EOF" to the out queue after processing
the final batch """
exhausted = False
batch = list()
for _ in range(self.batch_size):
item = self.get_item()
if item == "EOF":
exhausted = True
break
batch.append(item)
logger.trace("Returning batch size: %s", len(batch))
return (exhausted, batch)
# <<< DLIB RECTANGLE METHODS >>> #
@staticmethod
def is_mmod_rectangle(d_rectangle):
""" Return whether the passed in object is
a dlib.mmod_rectangle """
return isinstance(
d_rectangle,
dlib.mmod_rectangle) # pylint: disable=c-extension-no-member
def convert_to_dlib_rectangle(self, d_rect):
""" Convert detected mmod_rects to dlib_rectangle """
if self.is_mmod_rectangle(d_rect):
return d_rect.rect
return d_rect
# <<< MISC METHODS >>> #
@staticmethod
def get_vram_free():
""" Return total free VRAM on largest card """
stats = GPUStats()
vram = stats.get_card_most_free()
logger.verbose("Using device %s with %sMB free of %sMB",
vram["device"],
int(vram["free"]),
int(vram["total"]))
return int(vram["free"])
@staticmethod
def set_predetected(width, height):
""" Set a dlib rectangle for predetected faces """
# Predetected_face is used for sort tool.
# Landmarks should not be extracted again from predetected faces,
# because face data is lost, resulting in a large variance
# against extract from original image
logger.debug("Setting predetected face")
return [dlib.rectangle(0, 0, width, height)] # pylint: disable=c-extension-no-member