mirror of
https://github.com/zebrajr/faceswap.git
synced 2025-12-06 12:20:27 +01:00
* Clearer requirements for each platform
* Refactoring of old plugins (Model_Original + Extract_Align) + Cleanups
* Adding GAN128
* Update GAN to v2
* Create instance_normalization.py
* Fix decoder output
* Revert "Fix decoder output"
This reverts commit 3a8ecb8957fe65e66282197455d775eb88455a77.
* Fix convert
* Enable all options except perceptual_loss by default
* Disable instance norm
* Update Model.py
* Update Trainer.py
* Match GAN128 to shaoanlu's latest v2
* Add first_order to GAN128
* Disable `use_perceptual_loss`
* Fix call to `self.first_order`
* Switch to average loss in output
* Constrain average to last 100 iterations
* Fix math, constrain average to intervals of 100
* Fix math averaging again
* Remove math and simplify this damn averagin
* Add gan128 conversion
* Update convert.py
* Use non-warped images in masked preview
* Add K.set_learning_phase(1) to gan64
* Add K.set_learning_phase(1) to gan128
* Add missing keras import
* Use non-warped images in masked preview for gan128
* Exclude deleted faces from conversion
* --input-aligned-dir defaults to "{input_dir}/aligned"
* Simplify map operation
* port 'face_alignment' from PyTorch to Keras. It works x2 faster, but initialization takes 20secs.
2DFAN-4.h5 and mmod_human_face_detector.dat included in lib\FaceLandmarksExtractor
fixed dlib vs tensorflow conflict: dlib must do op first, then load keras model, otherwise CUDA OOM error
if face location not found by CNN, its try to find by HOG.
removed this:
- if face.landmarks == None:
- print("Warning! landmarks not found. Switching to crop!")
- return cv2.resize(face.image, (size, size))
because DetectedFace always has landmarks
* Enabled masked converter for GAN models
* Histogram matching, cli option for perceptual loss
* Fix init() positional args error
* Add backwards compatibility for aligned filenames
* Fix masked converter
* Remove GAN converters
65 lines
2.2 KiB
Python
65 lines
2.2 KiB
Python
# Based on the original https://www.reddit.com/r/deepfakes/ code sample + contribs
|
|
|
|
from keras.models import Model as KerasModel
|
|
from keras.layers import Input, Dense, Flatten, Reshape
|
|
from keras.layers.advanced_activations import LeakyReLU
|
|
from keras.layers.convolutional import Conv2D
|
|
from keras.optimizers import Adam
|
|
|
|
from .AutoEncoder import AutoEncoder
|
|
from lib.PixelShuffler import PixelShuffler
|
|
|
|
IMAGE_SHAPE = (64, 64, 3)
|
|
ENCODER_DIM = 1024
|
|
|
|
class Model(AutoEncoder):
|
|
def initModel(self):
|
|
optimizer = Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
|
|
x = Input(shape=IMAGE_SHAPE)
|
|
|
|
self.autoencoder_A = KerasModel(x, self.decoder_A(self.encoder(x)))
|
|
self.autoencoder_B = KerasModel(x, self.decoder_B(self.encoder(x)))
|
|
|
|
self.autoencoder_A.compile(optimizer=optimizer, loss='mean_absolute_error')
|
|
self.autoencoder_B.compile(optimizer=optimizer, loss='mean_absolute_error')
|
|
|
|
def converter(self, swap):
|
|
autoencoder = self.autoencoder_B if not swap else self.autoencoder_A
|
|
return lambda img: autoencoder.predict(img)
|
|
|
|
def conv(self, filters):
|
|
def block(x):
|
|
x = Conv2D(filters, kernel_size=5, strides=2, padding='same')(x)
|
|
x = LeakyReLU(0.1)(x)
|
|
return x
|
|
return block
|
|
|
|
def upscale(self, filters):
|
|
def block(x):
|
|
x = Conv2D(filters * 4, kernel_size=3, padding='same')(x)
|
|
x = LeakyReLU(0.1)(x)
|
|
x = PixelShuffler()(x)
|
|
return x
|
|
return block
|
|
|
|
def Encoder(self):
|
|
input_ = Input(shape=IMAGE_SHAPE)
|
|
x = input_
|
|
x = self.conv(128)(x)
|
|
x = self.conv(256)(x)
|
|
x = self.conv(512)(x)
|
|
x = self.conv(1024)(x)
|
|
x = Dense(ENCODER_DIM)(Flatten()(x))
|
|
x = Dense(4 * 4 * 1024)(x)
|
|
x = Reshape((4, 4, 1024))(x)
|
|
x = self.upscale(512)(x)
|
|
return KerasModel(input_, x)
|
|
|
|
def Decoder(self):
|
|
input_ = Input(shape=(8, 8, 512))
|
|
x = input_
|
|
x = self.upscale(256)(x)
|
|
x = self.upscale(128)(x)
|
|
x = self.upscale(64)(x)
|
|
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
return KerasModel(input_, x) |