faceswap/tools/sort.py
torzdf 66ed005ef3
Optimize Data Augmentation (#881)
* Move image utils to lib.image
* Add .pylintrc file
* Remove some cv2 pylint ignores
* TrainingData: Load images from disk in batches
* TrainingData: get_landmarks to batch
* TrainingData: transform and flip to batches
* TrainingData: Optimize color augmentation
* TrainingData: Optimize target and random_warp
* TrainingData - Convert _get_closest_match for batching
* TrainingData: Warp To Landmarks optimized
* Save models to threadpoolexecutor
* Move stack_images, Rename ImageManipulation. ImageAugmentation Docstrings
* Masks: Set dtype and threshold for lib.masks based on input face
* Docstrings and Documentation
2019-09-24 12:16:05 +01:00

767 lines
28 KiB
Python

#!/usr/bin/env python3
"""
A tool that allows for sorting and grouping images in different ways.
"""
import logging
import os
import sys
import operator
from shutil import copyfile
import numpy as np
import cv2
from tqdm import tqdm
# faceswap imports
from lib.cli import FullHelpArgumentParser
from lib import Serializer
from lib.faces_detect import DetectedFace
from lib.image import read_image
from lib.queue_manager import queue_manager
from lib.vgg_face2_keras import VGGFace2 as VGGFace
from plugins.plugin_loader import PluginLoader
from . import cli
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class Sort():
""" Sorts folders of faces based on input criteria """
# pylint: disable=no-member
def __init__(self, arguments):
self.args = arguments
self.changes = None
self.serializer = None
self.vgg_face = None
def process(self):
""" Main processing function of the sort tool """
# Setting default argument values that cannot be set by argparse
# Set output dir to the same value as input dir
# if the user didn't specify it.
if self.args.output_dir is None:
logger.verbose("No output directory provided. Using input dir as output dir.")
self.args.output_dir = self.args.input_dir
# Assigning default threshold values based on grouping method
if (self.args.final_process == "folders"
and self.args.min_threshold < 0.0):
method = self.args.group_method.lower()
if method == 'face-cnn':
self.args.min_threshold = 7.2
elif method == 'hist':
self.args.min_threshold = 0.3
# Load VGG Face if sorting by face
if self.args.sort_method.lower() == "face":
self.vgg_face = VGGFace(backend=self.args.backend, loglevel=self.args.loglevel)
# If logging is enabled, prepare container
if self.args.log_changes:
self.changes = dict()
# Assign default sort_log.json value if user didn't specify one
if self.args.log_file_path == 'sort_log.json':
self.args.log_file_path = os.path.join(self.args.input_dir,
'sort_log.json')
# Set serializer based on logfile extension
serializer_ext = os.path.splitext(
self.args.log_file_path)[-1]
self.serializer = Serializer.get_serializer_from_ext(
serializer_ext)
# Prepare sort, group and final process method names
_sort = "sort_" + self.args.sort_method.lower()
_group = "group_" + self.args.group_method.lower()
_final = "final_process_" + self.args.final_process.lower()
self.args.sort_method = _sort.replace('-', '_')
self.args.group_method = _group.replace('-', '_')
self.args.final_process = _final.replace('-', '_')
self.sort_process()
@staticmethod
def launch_aligner():
""" Load the aligner plugin to retrieve landmarks """
kwargs = dict(in_queue=queue_manager.get_queue("in"),
out_queue=queue_manager.get_queue("out"),
queue_size=8)
aligner = PluginLoader.get_aligner("fan")(normalize_method="hist")
aligner.batchsize = 1
aligner.initialize(**kwargs)
aligner.start()
@staticmethod
def alignment_dict(image):
""" Set the image to a dict for alignment """
height, width = image.shape[:2]
face = DetectedFace(x=0, w=width, y=0, h=height)
return {"image": image,
"detected_faces": [face]}
@staticmethod
def get_landmarks(filename):
""" Extract the face from a frame (If not alignments file found) """
image = read_image(filename, raise_error=True)
feed = Sort.alignment_dict(image)
feed["filename"] = filename
queue_manager.get_queue("in").put(feed)
face = queue_manager.get_queue("out").get()
landmarks = face["detected_faces"][0].landmarks_xy
return landmarks
def sort_process(self):
"""
This method dynamically assigns the functions that will be used to run
the core process of sorting, optionally grouping, renaming/moving into
folders. After the functions are assigned they are executed.
"""
sort_method = self.args.sort_method.lower()
group_method = self.args.group_method.lower()
final_method = self.args.final_process.lower()
img_list = getattr(self, sort_method)()
if "folders" in final_method:
# Check if non-dissim sort method and group method are not the same
if group_method.replace('group_', '') not in sort_method:
img_list = self.reload_images(group_method, img_list)
img_list = getattr(self, group_method)(img_list)
else:
img_list = getattr(self, group_method)(img_list)
getattr(self, final_method)(img_list)
logger.info("Done.")
# Methods for sorting
def sort_blur(self):
""" Sort by blur amount """
input_dir = self.args.input_dir
logger.info("Sorting by blur...")
img_list = [[img, self.estimate_blur(img)]
for img in
tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout)]
logger.info("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list
def sort_face(self):
""" Sort by face similarity """
input_dir = self.args.input_dir
logger.info("Sorting by face similarity...")
images = np.array(self.find_images(input_dir))
preds = np.array([self.vgg_face.predict(read_image(img, raise_error=True))
for img in tqdm(images, desc="loading", file=sys.stdout)])
logger.info("Sorting. Depending on ths size of your dataset, this may take a few "
"minutes...")
indices = self.vgg_face.sorted_similarity(preds, method="ward")
img_list = images[indices]
return img_list
def sort_face_cnn(self):
""" Sort by CNN similarity """
self.launch_aligner()
input_dir = self.args.input_dir
logger.info("Sorting by face-cnn similarity...")
img_list = []
for img in tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
img_list.append([img, np.array(landmarks)
if landmarks
else np.zeros((68, 2))])
queue_manager.terminate_queues()
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len - 1),
desc="Sorting",
file=sys.stdout):
min_score = float("inf")
j_min_score = i + 1
for j in range(i + 1, len(img_list)):
fl1 = img_list[i][1]
fl2 = img_list[j][1]
score = np.sum(np.absolute((fl2 - fl1).flatten()))
if score < min_score:
min_score = score
j_min_score = j
(img_list[i + 1],
img_list[j_min_score]) = (img_list[j_min_score],
img_list[i + 1])
return img_list
def sort_face_cnn_dissim(self):
""" Sort by CNN dissimilarity """
self.launch_aligner()
input_dir = self.args.input_dir
logger.info("Sorting by face-cnn dissimilarity...")
img_list = []
for img in tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
img_list.append([img, np.array(landmarks)
if landmarks
else np.zeros((68, 2)), 0])
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len - 1),
desc="Sorting",
file=sys.stdout):
score_total = 0
for j in range(i + 1, len(img_list)):
if i == j:
continue
fl1 = img_list[i][1]
fl2 = img_list[j][1]
score_total += np.sum(np.absolute((fl2 - fl1).flatten()))
img_list[i][2] = score_total
logger.info("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
return img_list
def sort_face_yaw(self):
""" Sort by yaw of face """
self.launch_aligner()
input_dir = self.args.input_dir
img_list = []
for img in tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
img_list.append(
[img, self.calc_landmarks_face_yaw(np.array(landmarks))])
logger.info("Sorting by face-yaw...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list
def sort_hist(self):
""" Sort by histogram of face similarity """
input_dir = self.args.input_dir
logger.info("Sorting by histogram similarity...")
img_list = [
[img, cv2.calcHist([read_image(img, raise_error=True)], [0], None, [256], [0, 256])]
for img in
tqdm(self.find_images(input_dir), desc="Loading", file=sys.stdout)
]
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len - 1), desc="Sorting",
file=sys.stdout):
min_score = float("inf")
j_min_score = i + 1
for j in range(i + 1, len(img_list)):
score = cv2.compareHist(img_list[i][1],
img_list[j][1],
cv2.HISTCMP_BHATTACHARYYA)
if score < min_score:
min_score = score
j_min_score = j
(img_list[i + 1],
img_list[j_min_score]) = (img_list[j_min_score],
img_list[i + 1])
return img_list
def sort_hist_dissim(self):
""" Sort by histigram of face dissimilarity """
input_dir = self.args.input_dir
logger.info("Sorting by histogram dissimilarity...")
img_list = [
[img,
cv2.calcHist([read_image(img, raise_error=True)], [0], None, [256], [0, 256]), 0]
for img in
tqdm(self.find_images(input_dir), desc="Loading", file=sys.stdout)
]
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len), desc="Sorting", file=sys.stdout):
score_total = 0
for j in range(0, img_list_len):
if i == j:
continue
score_total += cv2.compareHist(img_list[i][1],
img_list[j][1],
cv2.HISTCMP_BHATTACHARYYA)
img_list[i][2] = score_total
logger.info("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
return img_list
# Methods for grouping
def group_blur(self, img_list):
""" Group into bins by blur """
# Starting the binning process
num_bins = self.args.num_bins
# The last bin will get all extra images if it's
# not possible to distribute them evenly
num_per_bin = len(img_list) // num_bins
remainder = len(img_list) % num_bins
logger.info("Grouping by blur...")
bins = [[] for _ in range(num_bins)]
idx = 0
for i in range(num_bins):
for _ in range(num_per_bin):
bins[i].append(img_list[idx][0])
idx += 1
# If remainder is 0, nothing gets added to the last bin.
for i in range(1, remainder + 1):
bins[-1].append(img_list[-i][0])
return bins
def group_face_cnn(self, img_list):
""" Group into bins by CNN face similarity """
logger.info("Grouping by face-cnn similarity...")
# Groups are of the form: group_num -> reference faces
reference_groups = dict()
# Bins array, where index is the group number and value is
# an array containing the file paths to the images in that group.
bins = []
# Comparison threshold used to decide how similar
# faces have to be to be grouped together.
# It is multiplied by 1000 here to allow the cli option to use smaller
# numbers.
min_threshold = self.args.min_threshold * 1000
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len - 1),
desc="Grouping",
file=sys.stdout):
fl1 = img_list[i][1]
current_best = [-1, float("inf")]
for key, references in reference_groups.items():
try:
score = self.get_avg_score_faces_cnn(fl1, references)
except TypeError:
score = float("inf")
except ZeroDivisionError:
score = float("inf")
if score < current_best[1]:
current_best[0], current_best[1] = key, score
if current_best[1] < min_threshold:
reference_groups[current_best[0]].append(fl1[0])
bins[current_best[0]].append(img_list[i][0])
else:
reference_groups[len(reference_groups)] = [img_list[i][1]]
bins.append([img_list[i][0]])
return bins
def group_face_yaw(self, img_list):
""" Group into bins by yaw of face """
# Starting the binning process
num_bins = self.args.num_bins
# The last bin will get all extra images if it's
# not possible to distribute them evenly
num_per_bin = len(img_list) // num_bins
remainder = len(img_list) % num_bins
logger.info("Grouping by face-yaw...")
bins = [[] for _ in range(num_bins)]
idx = 0
for i in range(num_bins):
for _ in range(num_per_bin):
bins[i].append(img_list[idx][0])
idx += 1
# If remainder is 0, nothing gets added to the last bin.
for i in range(1, remainder + 1):
bins[-1].append(img_list[-i][0])
return bins
def group_hist(self, img_list):
""" Group into bins by histogram """
logger.info("Grouping by histogram...")
# Groups are of the form: group_num -> reference histogram
reference_groups = dict()
# Bins array, where index is the group number and value is
# an array containing the file paths to the images in that group
bins = []
min_threshold = self.args.min_threshold
img_list_len = len(img_list)
reference_groups[0] = [img_list[0][1]]
bins.append([img_list[0][0]])
for i in tqdm(range(1, img_list_len),
desc="Grouping",
file=sys.stdout):
current_best = [-1, float("inf")]
for key, value in reference_groups.items():
score = self.get_avg_score_hist(img_list[i][1], value)
if score < current_best[1]:
current_best[0], current_best[1] = key, score
if current_best[1] < min_threshold:
reference_groups[current_best[0]].append(img_list[i][1])
bins[current_best[0]].append(img_list[i][0])
else:
reference_groups[len(reference_groups)] = [img_list[i][1]]
bins.append([img_list[i][0]])
return bins
# Final process methods
def final_process_rename(self, img_list):
""" Rename the files """
output_dir = self.args.output_dir
process_file = self.set_process_file_method(self.args.log_changes,
self.args.keep_original)
# Make sure output directory exists
if not os.path.exists(output_dir):
os.makedirs(output_dir)
description = (
"Copying and Renaming" if self.args.keep_original
else "Moving and Renaming"
)
for i in tqdm(range(0, len(img_list)),
desc=description,
leave=False,
file=sys.stdout):
src = img_list[i] if isinstance(img_list[i], str) else img_list[i][0]
src_basename = os.path.basename(src)
dst = os.path.join(output_dir, '{:05d}_{}'.format(i, src_basename))
try:
process_file(src, dst, self.changes)
except FileNotFoundError as err:
logger.error(err)
logger.error('fail to rename %s', src)
for i in tqdm(range(0, len(img_list)),
desc=description,
file=sys.stdout):
renaming = self.set_renaming_method(self.args.log_changes)
fname = img_list[i] if isinstance(img_list[i], str) else img_list[i][0]
src, dst = renaming(fname, output_dir, i, self.changes)
try:
os.rename(src, dst)
except FileNotFoundError as err:
logger.error(err)
logger.error('fail to rename %s', format(src))
if self.args.log_changes:
self.write_to_log(self.changes)
def final_process_folders(self, bins):
""" Move the files to folders """
output_dir = self.args.output_dir
process_file = self.set_process_file_method(self.args.log_changes,
self.args.keep_original)
# First create new directories to avoid checking
# for directory existence in the moving loop
logger.info("Creating group directories.")
for i in range(len(bins)):
directory = os.path.join(output_dir, str(i))
if not os.path.exists(directory):
os.makedirs(directory)
description = (
"Copying into Groups" if self.args.keep_original
else "Moving into Groups"
)
logger.info("Total groups found: %s", len(bins))
for i in tqdm(range(len(bins)), desc=description, file=sys.stdout):
for j in range(len(bins[i])):
src = bins[i][j]
src_basename = os.path.basename(src)
dst = os.path.join(output_dir, str(i), src_basename)
try:
process_file(src, dst, self.changes)
except FileNotFoundError as err:
logger.error(err)
logger.error("Failed to move '%s' to '%s'", src, dst)
if self.args.log_changes:
self.write_to_log(self.changes)
# Various helper methods
def write_to_log(self, changes):
""" Write the changes to log file """
logger.info("Writing sort log to: '%s'", self.args.log_file_path)
with open(self.args.log_file_path, 'w') as lfile:
lfile.write(self.serializer.marshal(changes))
def reload_images(self, group_method, img_list):
"""
Reloads the image list by replacing the comparative values with those
that the chosen grouping method expects.
:param group_method: str name of the grouping method that will be used.
:param img_list: image list that has been sorted by one of the sort
methods.
:return: img_list but with the comparative values that the chosen
grouping method expects.
"""
input_dir = self.args.input_dir
logger.info("Preparing to group...")
if group_method == 'group_blur':
temp_list = [[img, self.estimate_blur(read_image(img, raise_error=True))]
for img in
tqdm(self.find_images(input_dir),
desc="Reloading",
file=sys.stdout)]
elif group_method == 'group_face_cnn':
self.launch_aligner()
temp_list = []
for img in tqdm(self.find_images(input_dir),
desc="Reloading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
temp_list.append([img, np.array(landmarks)
if landmarks
else np.zeros((68, 2))])
elif group_method == 'group_face_yaw':
self.launch_aligner()
temp_list = []
for img in tqdm(self.find_images(input_dir),
desc="Reloading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
temp_list.append(
[img,
self.calc_landmarks_face_yaw(np.array(landmarks))])
elif group_method == 'group_hist':
temp_list = [
[img,
cv2.calcHist([read_image(img, raise_error=True)], [0], None, [256], [0, 256])]
for img in
tqdm(self.find_images(input_dir),
desc="Reloading",
file=sys.stdout)
]
else:
raise ValueError("{} group_method not found.".format(group_method))
return self.splice_lists(img_list, temp_list)
@staticmethod
def splice_lists(sorted_list, new_vals_list):
"""
This method replaces the value at index 1 in each sub-list in the
sorted_list with the value that is calculated for the same img_path,
but found in new_vals_list.
Format of lists: [[img_path, value], [img_path2, value2], ...]
:param sorted_list: list that has been sorted by one of the sort
methods.
:param new_vals_list: list that has been loaded by a different method
than the sorted_list.
:return: list that is sorted in the same way as the input sorted list
but the values corresponding to each image are from new_vals_list.
"""
new_list = []
# Make new list of just image paths to serve as an index
val_index_list = [i[0] for i in new_vals_list]
for i in tqdm(range(len(sorted_list)),
desc="Splicing",
file=sys.stdout):
current_img = sorted_list[i] if isinstance(sorted_list[i], str) else sorted_list[i][0]
new_val_index = val_index_list.index(current_img)
new_list.append([current_img, new_vals_list[new_val_index][1]])
return new_list
@staticmethod
def find_images(input_dir):
""" Return list of images at specified location """
result = []
extensions = [".jpg", ".png", ".jpeg"]
for root, _, files in os.walk(input_dir):
for file in files:
if os.path.splitext(file)[1].lower() in extensions:
result.append(os.path.join(root, file))
return result
@staticmethod
def estimate_blur(image_file):
"""
Estimate the amount of blur an image has with the variance of the Laplacian.
Normalize by pixel number to offset the effect of image size on pixel gradients & variance
"""
image = read_image(image_file, raise_error=True)
if image.ndim == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur_map = cv2.Laplacian(image, cv2.CV_32F)
score = np.var(blur_map) / np.sqrt(image.shape[0] * image.shape[1])
return score
@staticmethod
def calc_landmarks_face_pitch(flm):
""" UNUSED - Calculate the amount of pitch in a face """
var_t = ((flm[6][1] - flm[8][1]) + (flm[10][1] - flm[8][1])) / 2.0
var_b = flm[8][1]
return var_b - var_t
@staticmethod
def calc_landmarks_face_yaw(flm):
""" Calculate the amount of yaw in a face """
var_l = ((flm[27][0] - flm[0][0])
+ (flm[28][0] - flm[1][0])
+ (flm[29][0] - flm[2][0])) / 3.0
var_r = ((flm[16][0] - flm[27][0])
+ (flm[15][0] - flm[28][0])
+ (flm[14][0] - flm[29][0])) / 3.0
return var_r - var_l
@staticmethod
def set_process_file_method(log_changes, keep_original):
"""
Assigns the final file processing method based on whether changes are
being logged and whether the original files are being kept in the
input directory.
Relevant cli arguments: -k, -l
:return: function reference
"""
if log_changes:
if keep_original:
def process_file(src, dst, changes):
""" Process file method if logging changes
and keeping original """
copyfile(src, dst)
changes[src] = dst
else:
def process_file(src, dst, changes):
""" Process file method if logging changes
and not keeping original """
os.rename(src, dst)
changes[src] = dst
else:
if keep_original:
def process_file(src, dst, changes): # pylint: disable=unused-argument
""" Process file method if not logging changes
and keeping original """
copyfile(src, dst)
else:
def process_file(src, dst, changes): # pylint: disable=unused-argument
""" Process file method if not logging changes
and not keeping original """
os.rename(src, dst)
return process_file
@staticmethod
def set_renaming_method(log_changes):
""" Set the method for renaming files """
if log_changes:
def renaming(src, output_dir, i, changes):
""" Rename files method if logging changes """
src_basename = os.path.basename(src)
__src = os.path.join(output_dir,
'{:05d}_{}'.format(i, src_basename))
dst = os.path.join(
output_dir,
'{:05d}{}'.format(i, os.path.splitext(src_basename)[1]))
changes[src] = dst
return __src, dst
else:
def renaming(src, output_dir, i, changes): # pylint: disable=unused-argument
""" Rename files method if not logging changes """
src_basename = os.path.basename(src)
src = os.path.join(output_dir,
'{:05d}_{}'.format(i, src_basename))
dst = os.path.join(
output_dir,
'{:05d}{}'.format(i, os.path.splitext(src_basename)[1]))
return src, dst
return renaming
@staticmethod
def get_avg_score_hist(img1, references):
""" Return the average histogram score between a face and
reference image """
scores = []
for img2 in references:
score = cv2.compareHist(img1, img2, cv2.HISTCMP_BHATTACHARYYA)
scores.append(score)
return sum(scores) / len(scores)
@staticmethod
def get_avg_score_faces_cnn(fl1, references):
""" Return the average CNN similarity score
between a face and reference image """
scores = []
for fl2 in references:
score = np.sum(np.absolute((fl2 - fl1).flatten()))
scores.append(score)
return sum(scores) / len(scores)
def bad_args(args): # pylint: disable=unused-argument
""" Print help on bad arguments """
PARSER.print_help()
exit(0)
if __name__ == "__main__":
__WARNING_STRING = "Important: face-cnn method will cause an error when "
__WARNING_STRING += "this tool is called directly instead of through the "
__WARNING_STRING += "tools.py command script."
print(__WARNING_STRING)
print("Images sort tool.\n")
PARSER = FullHelpArgumentParser()
SUBPARSER = PARSER.add_subparsers()
SORT = cli.SortArgs(
SUBPARSER, "sort", "Sort images using various methods.")
PARSER.set_defaults(func=bad_args)
ARGUMENTS = PARSER.parse_args()
ARGUMENTS.func(ARGUMENTS)