faceswap/tools/lib_alignments/media.py
torzdf 66ed005ef3
Optimize Data Augmentation (#881)
* Move image utils to lib.image
* Add .pylintrc file
* Remove some cv2 pylint ignores
* TrainingData: Load images from disk in batches
* TrainingData: get_landmarks to batch
* TrainingData: transform and flip to batches
* TrainingData: Optimize color augmentation
* TrainingData: Optimize target and random_warp
* TrainingData - Convert _get_closest_match for batching
* TrainingData: Warp To Landmarks optimized
* Save models to threadpoolexecutor
* Move stack_images, Rename ImageManipulation. ImageAugmentation Docstrings
* Masks: Set dtype and threshold for lib.masks based on input face
* Docstrings and Documentation
2019-09-24 12:16:05 +01:00

391 lines
15 KiB
Python

#!/usr/bin/env python3
""" Media items (Alignments, Faces, Frames)
for alignments tool """
import logging
import os
import cv2
import numpy as np
from tqdm import tqdm
# TODO imageio single frame seek seems slow. Look into this
# import imageio
from lib.aligner import Extract as AlignerExtract
from lib.alignments import Alignments
from lib.faces_detect import DetectedFace
from lib.image import count_frames_and_secs, encode_image_with_hash, read_image, read_image_hash
from lib.utils import _image_extensions, _video_extensions
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class AlignmentData(Alignments):
""" Class to hold the alignment data """
def __init__(self, alignments_file, destination_format):
logger.debug("Initializing %s: (alignments file: '%s', destination_format: '%s')",
self.__class__.__name__, alignments_file, destination_format)
logger.info("[ALIGNMENT DATA]") # Tidy up cli output
folder, filename = self.check_file_exists(alignments_file)
if filename.lower() == "dfl":
self.set_dfl(destination_format)
return
super().__init__(folder, filename=filename)
self.set_destination_format(destination_format)
logger.verbose("%s items loaded", self.frames_count)
logger.debug("Initialized %s", self.__class__.__name__)
@staticmethod
def check_file_exists(alignments_file):
""" Check the alignments file exists"""
folder, filename = os.path.split(alignments_file)
if filename.lower() == "dfl":
folder = None
filename = "dfl"
logger.info("Using extracted pngs for alignments")
elif not os.path.isfile(alignments_file):
logger.error("ERROR: alignments file not found at: '%s'", alignments_file)
exit(0)
if folder:
logger.verbose("Alignments file exists at '%s'", alignments_file)
return folder, filename
def set_dfl(self, destination_format):
""" Set the alignments for dfl alignments """
logger.debug("Alignments are DFL format")
self.file = "dfl"
self.set_destination_format(destination_format)
def set_destination_format(self, destination_format):
""" Standardize the destination format to the correct extension """
extensions = {".json": "json",
".p": "pickle",
".yml": "yaml",
".yaml": "yaml"}
dst_fmt = None
file_ext = os.path.splitext(self.file)[1].lower()
logger.debug("File extension: '%s'", file_ext)
if destination_format is not None:
dst_fmt = destination_format
elif self.file == "dfl":
dst_fmt = "json"
elif file_ext in extensions.keys():
dst_fmt = extensions[file_ext]
else:
logger.error("'%s' is not a supported serializer. Exiting", file_ext)
exit(0)
logger.verbose("Destination format set to '%s'", dst_fmt)
self.serializer = self.get_serializer("", dst_fmt)
filename = os.path.splitext(self.file)[0]
self.file = "{}.{}".format(filename, self.serializer.ext)
logger.debug("Destination file: '%s'", self.file)
def save(self):
""" Backup copy of old alignments and save new alignments """
self.backup()
super().save()
class MediaLoader():
""" Class to load filenames from folder """
def __init__(self, folder):
logger.debug("Initializing %s: (folder: '%s')", self.__class__.__name__, folder)
logger.info("[%s DATA]", self.__class__.__name__.upper())
self._count = None
self.folder = folder
self.vid_reader = self.check_input_folder()
self.file_list_sorted = self.sorted_items()
self.items = self.load_items()
logger.verbose("%s items loaded", self.count)
logger.debug("Initialized %s", self.__class__.__name__)
@property
def is_video(self):
""" Return whether source is a video or not """
return self.vid_reader is not None
@property
def count(self):
""" Number of faces or frames """
if self._count is not None:
return self._count
if self.is_video:
self._count = int(count_frames_and_secs(self.folder)[0])
else:
self._count = len(self.file_list_sorted)
return self._count
def check_input_folder(self):
""" makes sure that the frames or faces folder exists
If frames folder contains a video file return imageio reader object """
err = None
loadtype = self.__class__.__name__
if not self.folder:
err = "ERROR: A {} folder must be specified".format(loadtype)
elif not os.path.exists(self.folder):
err = ("ERROR: The {} location {} could not be "
"found".format(loadtype, self.folder))
if err:
logger.error(err)
exit(0)
if (loadtype == "Frames" and
os.path.isfile(self.folder) and
os.path.splitext(self.folder)[1].lower() in _video_extensions):
logger.verbose("Video exists at: '%s'", self.folder)
retval = cv2.VideoCapture(self.folder) # pylint: disable=no-member
# TODO ImageIO single frame seek seems slow. Look into this
# retval = imageio.get_reader(self.folder)
else:
logger.verbose("Folder exists at '%s'", self.folder)
retval = None
return retval
@staticmethod
def valid_extension(filename):
""" Check whether passed in file has a valid extension """
extension = os.path.splitext(filename)[1]
retval = extension.lower() in _image_extensions
logger.trace("Filename has valid extension: '%s': %s", filename, retval)
return retval
@staticmethod
def sorted_items():
""" Override for specific folder processing """
return list()
@staticmethod
def process_folder():
""" Override for specific folder processing """
return list()
@staticmethod
def load_items():
""" Override for specific item loading """
return dict()
def load_image(self, filename):
""" Load an image """
if self.is_video:
image = self.load_video_frame(filename)
else:
src = os.path.join(self.folder, filename)
logger.trace("Loading image: '%s'", src)
image = read_image(src, raise_error=True)
return image
def load_video_frame(self, filename):
""" Load a requested frame from video """
frame = os.path.splitext(filename)[0]
logger.trace("Loading video frame: '%s'", frame)
frame_no = int(frame[frame.rfind("_") + 1:]) - 1
self.vid_reader.set(cv2.CAP_PROP_POS_FRAMES, frame_no) # pylint: disable=no-member
_, image = self.vid_reader.read()
# TODO imageio single frame seek seems slow. Look into this
# self.vid_reader.set_image_index(frame_no)
# image = self.vid_reader.get_next_data()[:, :, ::-1]
return image
@staticmethod
def save_image(output_folder, filename, image):
""" Save an image """
output_file = os.path.join(output_folder, filename)
output_file = os.path.splitext(output_file)[0]+'.png'
logger.trace("Saving image: '%s'", output_file)
cv2.imwrite(output_file, image) # pylint: disable=no-member
class Faces(MediaLoader):
""" Object to hold the faces that are to be swapped out """
def process_folder(self):
""" Iterate through the faces dir pulling out various information """
logger.info("Loading file list from %s", self.folder)
for face in tqdm(os.listdir(self.folder), desc="Reading Face Hashes"):
if not self.valid_extension(face):
continue
filename = os.path.splitext(face)[0]
file_extension = os.path.splitext(face)[1]
face_hash = read_image_hash(os.path.join(self.folder, face))
retval = {"face_fullname": face,
"face_name": filename,
"face_extension": file_extension,
"face_hash": face_hash}
logger.trace(retval)
yield retval
def load_items(self):
""" Load the face names into dictionary """
faces = dict()
for face in self.file_list_sorted:
faces.setdefault(face["face_hash"], list()).append((face["face_name"],
face["face_extension"]))
logger.trace(faces)
return faces
def sorted_items(self):
""" Return the items sorted by face name """
items = sorted([item for item in self.process_folder()],
key=lambda x: (x["face_name"]))
logger.trace(items)
return items
class Frames(MediaLoader):
""" Object to hold the frames that are to be checked against """
def process_folder(self):
""" Iterate through the frames dir pulling the base filename """
iterator = self.process_video if self.is_video else self.process_frames
for item in iterator():
yield item
def process_frames(self):
""" Process exported Frames """
logger.info("Loading file list from %s", self.folder)
for frame in os.listdir(self.folder):
if not self.valid_extension(frame):
continue
filename = os.path.splitext(frame)[0]
file_extension = os.path.splitext(frame)[1]
retval = {"frame_fullname": frame,
"frame_name": filename,
"frame_extension": file_extension}
logger.trace(retval)
yield retval
def process_video(self):
"""Dummy in frames for video """
logger.info("Loading video frames from %s", self.folder)
vidname = os.path.splitext(os.path.basename(self.folder))[0]
for i in range(self.count):
idx = i + 1
# Keep filename format for outputted face
filename = "{}_{:06d}".format(vidname, idx)
retval = {"frame_fullname": "{}.png".format(filename),
"frame_name": filename,
"frame_extension": ".png"}
logger.trace(retval)
yield retval
def load_items(self):
""" Load the frame info into dictionary """
frames = dict()
for frame in self.file_list_sorted:
frames[frame["frame_fullname"]] = (frame["frame_name"],
frame["frame_extension"])
logger.trace(frames)
return frames
def sorted_items(self):
""" Return the items sorted by filename """
items = sorted([item for item in self.process_folder()],
key=lambda x: (x["frame_name"]))
logger.trace(items)
return items
class ExtractedFaces():
""" Holds the extracted faces and matrix for
alignments """
def __init__(self, frames, alignments, size=256, align_eyes=False):
logger.trace("Initializing %s: size: %s", self.__class__.__name__, size)
self.size = size
self.padding = int(size * 0.1875)
self.align_eyes_bool = align_eyes
self.alignments = alignments
self.frames = frames
self.current_frame = None
self.faces = list()
logger.trace("Initialized %s", self.__class__.__name__)
def get_faces(self, frame):
""" Return faces and transformed landmarks
for each face in a given frame with it's alignments"""
logger.trace("Getting faces for frame: '%s'", frame)
self.current_frame = None
alignments = self.alignments.get_faces_in_frame(frame)
logger.trace("Alignments for frame: (frame: '%s', alignments: %s)", frame, alignments)
if not alignments:
self.faces = list()
return
image = self.frames.load_image(frame)
self.faces = [self.extract_one_face(alignment, image.copy()) for alignment in alignments]
self.current_frame = frame
def extract_one_face(self, alignment, image):
""" Extract one face from image """
logger.trace("Extracting one face: (frame: '%s', alignment: %s)",
self.current_frame, alignment)
face = DetectedFace()
face.from_alignment(alignment, image=image)
face.load_aligned(image, size=self.size)
face = self.align_eyes(face, image) if self.align_eyes_bool else face
return face
def get_faces_in_frame(self, frame, update=False):
""" Return the faces for the selected frame """
logger.trace("frame: '%s', update: %s", frame, update)
if self.current_frame != frame or update:
self.get_faces(frame)
return self.faces
def get_roi_size_for_frame(self, frame):
""" Return the size of the original extract box for
the selected frame """
logger.trace("frame: '%s'", frame)
if self.current_frame != frame:
self.get_faces(frame)
sizes = list()
for face in self.faces:
roi = face.original_roi.squeeze()
top_left, top_right = roi[0], roi[3]
len_x = top_right[0] - top_left[0]
len_y = top_right[1] - top_left[1]
if top_left[1] == top_right[1]:
length = len_y
else:
length = int(((len_x ** 2) + (len_y ** 2)) ** 0.5)
sizes.append(length)
logger.trace("sizes: '%s'", sizes)
return sizes
@staticmethod
def save_face_with_hash(filename, extension, face):
""" Save a face and return it's hash """
f_hash, img = encode_image_with_hash(face, extension)
logger.trace("Saving face: '%s'", filename)
with open(filename, "wb") as out_file:
out_file.write(img)
return f_hash
def align_eyes(self, face, image):
""" Re-extract a face with the pupils forced to be absolutely horizontally aligned """
umeyama_landmarks = face.aligned_landmarks
leftEyeCenter = umeyama_landmarks[42:48].mean(axis=0)
rightEyeCenter = umeyama_landmarks[36:42].mean(axis=0)
eyesCenter = umeyama_landmarks[36:48].mean(axis=0)
dY = rightEyeCenter[1] - leftEyeCenter[1]
dX = rightEyeCenter[0] - leftEyeCenter[0]
theta = np.pi - np.arctan2(dY, dX)
rot_cos = np.cos(theta)
rot_sin = np.sin(theta)
rotation_matrix = np.array([[rot_cos, -rot_sin, 0.],
[rot_sin, rot_cos, 0.],
[0., 0., 1.]])
mat_umeyama = np.concatenate((face.aligned["matrix"], np.array([[0., 0., 1.]])), axis=0)
corrected_mat = np.dot(rotation_matrix, mat_umeyama)
face.aligned["matrix"] = corrected_mat[:2]
face.aligned["face"] = AlignerExtract().transform(image,
face.aligned["matrix"],
face.aligned["size"],
int(face.aligned["size"] * 0.375) // 2)
logger.trace("Adjusted matrix: %s", face.aligned["matrix"])
return face