* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD
- Gui - Stats - Return empty dict on state file look up error
- Gui - Last Session - Don't load saved project information when loading project from last session
- Train - Set default coverage to 87.5%
- Add support for different mask centering
- Update legacy alignments to store mask centering
- Bugfix: lib.image ImageIO. Ensure unique queues are created (fixes mask tool when Face is input and an output folder is provided)
- Swallow OSErrors when failing to load preview image
- Fix event_reader mapping for model output to loss names
- stats - Ensure that _tb_logs exists prior to calling stop training
- Fix spacing between buttons on Control Panels
- Configurable background on Control Panels
- Fix background color of TreeView menu in settings pop up
- Change TreeView selected item highlight color
- Change console background color to match control panel
- Fix unfilled color in control panel background
- plugins.train.trainer._base - Don't output error message for sides which have valid masks
- lib.gui.menu - Fix project file saving extension on Linux
- lib.image Don't raise error if legacy non-png is found when reading header data
- plugins.train.trainer._base - Correctly pass legacy alignments through to DetectedFace
Documentation
- Update Usage.md, align.rst and image.rst
lib.image.py
- read_image - Remove hash return, add metadata return
- Remove read_image_hash functions
- Add read_image_meta functios
- Replace encode_image_with_hash with encode_image (to store metadata)
- Add png meta reading and writing functions
- Update Image Loaders/Savers to handle metadata rather than hashes
lib.training_data
- Naming updates to remove references to hashes
lib.align.Alignments
- Add versioning notes
- Increment alignments version to 2.1
- Deprecate hashing lookup functions
- Replace filter_hashes with filter_faces
lib.align.detected_face
- DetectedFace
- Remove hash property
- Add png header data serializing/deserializing functions
- Mask
- Add png header data serializing/deserializing functions
- add update_legacy_png_header function to update png meta data
lib.cli.args - Deprecate alignments files for training
- plugins.train.trainer
- Update alignments/mask code to read png header data
- scripts.convert
- Aligned images folder - read data from png headers
- scripts.extract
- Write png header information and no longer store hash of face
- tools.alignments
- remove leftover-faces, merge and update-hashes jobs
- Update jobs to use png meta data rather than hashes
- tools.manual
- Update extract code to output png meta data and don't store hashes
- Perform check on launch that tool is not pointing at a faces folder
tools.mask
- Update to use png meta data
tools.sort
- Update to use png meta data
* Minimum requirements to tf2.3.
- Handle upgrades for Windows users with tf2.2 installed by Pip
- Handle windows upgrade from pip tf2.2
- Explicitly install Cuda for Conda installs
* Update tensorflow errors api reference
* Suppress AutoGraph warning messages
* Update GUI Stats to work with tf2.3
* Fix live graph for tf2.3
* DSSIMObjective - autoGraph bugfix
* Update Travis test
- Manual Tool:
- Hide annotations for faces not meeting criteria
- Update landmarks on face add/del
- Clearer landmark annotations
- Handle non-numerics in frame number box
- Training
- Fix mis-aligned preview images
- Allows mixing legacy + new alignments for A and B
- Catch non-training images in training folder
- Catch inconsistently sized training images
- Standardize coverage ratio calculation
- lib.image - Add option to get image shape along with hash
Dfaker model:
- Add 256px mode
* Extract
- Implement aligner re-feeding
- Add extract type to pipeline.ExtractMedia
- Add pose annotation to debug
* Convert
- implement centering
- remove usage of feed and reference face properties
- Remove distributed option from convert
- Force update of alignments file on legacy receive
* Train
- Resize preview image to model output size
- Force legacy centering if centering does not exist in model's state file
- Enable training on legacy face sets
* Alignments Tool
- Update draw to include head/pose
- Remove DFL drop + linting
- Remove remove-frames job
- remove align-eyes option
- Update legacy masks to new extract type
- Exit if attempting to merge version 1.0 alignments files with version 2.0 alignments files
- Re-generate thumbnails on legacy upgrade
* Mask Tool
- Update for new extract + bugfix full frame
* Manual Tool
- Update to new extraction method
- Disable legacy alignments,
- extract box bugfix
- extract faces - size to 512 and center on head
* Preview Tool
- Display based on model centering
* Sort Tool
- Use alignments for sort by face
* lib.aligner
- Add Pose Class
- Add AlignedFace Class
- center _MEAN_FACE on x
- Add meta information with versioning to alignments file
- lib.aligner.get_align_matrix to use landmarks not face
- Refactor aligned faces in lib.faces_detect
* lib.logger
- larger file log padding
* lib.config
- Fix global changeable_items
* lib.face_filter
- Use new extracted face images
* lib.image
- bump thumbnail default size to 96px
* Faster stat loading + caching
* Compress data in cache
* Optimize some calculations
* Vectorize smoothing
* stats.Calculations optimized
* Load latest training data from live iterator
* Add options to training graph
* Priority Training for Mouth and Eyes - Tensorflow
* Use chosen loss function for area multipliers
* loss multipliers for AMD
* Fix mask multipliers for plaid and roll PenalizedMaskLoss into LossWrapper
* losses_tf: roll PenalizedMaskLoss into LossWrapper
* Core Updates
- Remove lib.utils.keras_backend_quiet and replace with get_backend() where relevant
- Document lib.gpu_stats and lib.sys_info
- Remove call to GPUStats.is_plaidml from convert and replace with get_backend()
- lib.gui.menu - typofix
* Update Dependencies
Bump Tensorflow Version Check
* Port extraction to tf2
* Add custom import finder for loading Keras or tf.keras depending on backend
* Add `tensorflow` to KerasFinder search path
* Basic TF2 training running
* model.initializers - docstring fix
* Fix and pass tests for tf2
* Replace Keras backend tests with faceswap backend tests
* Initial optimizers update
* Monkey patch tf.keras optimizer
* Remove custom Adam Optimizers and Memory Saving Gradients
* Remove multi-gpu option. Add Distribution to cli
* plugins.train.model._base: Add Mirror, Central and Default distribution strategies
* Update tensorboard kwargs for tf2
* Penalized Loss - Fix for TF2 and AMD
* Fix syntax for tf2.1
* requirements typo fix
* Explicit None for clipnorm if using a distribution strategy
* Fix penalized loss for distribution strategies
* Update Dlight
* typo fix
* Pin to TF2.2
* setup.py - Install tensorflow from pip if not available in Conda
* Add reduction options and set default for mirrored distribution strategy
* Explicitly use default strategy rather than nullcontext
* lib.model.backup_restore documentation
* Remove mirrored strategy reduction method and default based on OS
* Initial restructure - training
* Remove PingPong
Start model.base refactor
* Model saving and resuming enabled
* More tidying up of model.base
* Enable backup and snapshotting
* Re-enable state file
Remove loss names from state file
Fix print loss function
Set snapshot iterations correctly
* Revert original model to Keras Model structure rather than custom layer
Output full model and sub model summary
Change NNBlocks to callables rather than custom keras layers
* Apply custom Conv2D layer
* Finalize NNBlock restructure
Update Dfaker blocks
* Fix reloading model under a different distribution strategy
* Pass command line arguments through to trainer
* Remove training_opts from model and reference params directly
* Tidy up model __init__
* Re-enable tensorboard logging
Suppress "Model Not Compiled" warning
* Fix timelapse
* lib.model.nnblocks - Bugfix residual block
Port dfaker
bugfix original
* dfl-h128 ported
* DFL SAE ported
* IAE Ported
* dlight ported
* port lightweight
* realface ported
* unbalanced ported
* villain ported
* lib.cli.args - Update Batchsize + move allow_growth to config
* Remove output shape definition
Get image sizes per side rather than globally
* Strip mask input from encoder
* Fix learn mask and output learned mask to preview
* Trigger Allow Growth prior to setting strategy
* Fix GUI Graphing
* GUI - Display batchsize correctly + fix training graphs
* Fix penalized loss
* Enable mixed precision training
* Update analysis displayed batch to match input
* Penalized Loss - Multi-GPU Fix
* Fix all losses for TF2
* Fix Reflect Padding
* Allow different input size for each side of the model
* Fix conv-aware initialization on reload
* Switch allow_growth order
* Move mixed_precision to cli
* Remove distrubution strategies
* Compile penalized loss sub-function into LossContainer
* Bump default save interval to 250
Generate preview on first iteration but don't save
Fix iterations to start at 1 instead of 0
Remove training deprecation warnings
Bump some scripts.train loglevels
* Add ability to refresh preview on demand on pop-up window
* Enable refresh of training preview from GUI
* Fix Convert
Debug logging in Initializers
* Fix Preview Tool
* Update Legacy TF1 weights to TF2
Catch stats error on loading stats with missing logs
* lib.gui.popup_configure - Make more responsive + document
* Multiple Outputs supported in trainer
Original Model - Mask output bugfix
* Make universal inference model for convert
Remove scaling from penalized mask loss (now handled at input to y_true)
* Fix inference model to work properly with all models
* Fix multi-scale output for convert
* Fix clipnorm issue with distribution strategies
Edit error message on OOM
* Update plaidml losses
* Add missing file
* Disable gmsd loss for plaidnl
* PlaidML - Basic training working
* clipnorm rewriting for mixed-precision
* Inference model creation bugfixes
* Remove debug code
* Bugfix: Default clipnorm to 1.0
* Remove all mask inputs from training code
* Remove mask inputs from convert
* GUI - Analysis Tab - Docstrings
* Fix rate in totals row
* lib.gui - Only update display pages if they have focus
* Save the model on first iteration
* plaidml - Fix SSIM loss with penalized loss
* tools.alignments - Remove manual and fix jobs
* GUI - Remove case formatting on help text
* gui MultiSelect custom widget - Set default values on init
* vgg_face2 - Move to plugins.extract.recognition and use plugins._base base class
cli - Add global GPU Exclude Option
tools.sort - Use global GPU Exlude option for backend
lib.model.session - Exclude all GPUs when running in CPU mode
lib.cli.launcher - Set backend to CPU mode when all GPUs excluded
* Cascade excluded devices to GPU Stats
* Explicit GPU selection for Train and Convert
* Reduce Tensorflow Min GPU Multiprocessor Count to 4
* remove compat.v1 code from extract
* Force TF to skip mixed precision compatibility check if GPUs have been filtered
* Add notes to config for non-working AMD losses
* Rasie error if forcing extract to CPU mode
* Fix loading of legace dfl-sae weights + dfl-sae typo fix
* Remove unused requirements
Update sphinx requirements
Fix broken rst file locations
* docs: lib.gui.display
* clipnorm amd condition check
* documentation - gui.display_analysis
* Documentation - gui.popup_configure
* Documentation - lib.logger
* Documentation - lib.model.initializers
* Documentation - lib.model.layers
* Documentation - lib.model.losses
* Documentation - lib.model.nn_blocks
* Documetation - lib.model.normalization
* Documentation - lib.model.session
* Documentation - lib.plaidml_stats
* Documentation: lib.training_data
* Documentation: lib.utils
* Documentation: plugins.train.model._base
* GUI Stats: prevent stats from using GPU
* Documentation - Original Model
* Documentation: plugins.model.trainer._base
* linting
* unit tests: initializers + losses
* unit tests: nn_blocks
* bugfix - Exclude gpu devices in train, not include
* Enable Exclude-Gpus in Extract
* Enable exclude gpus in tools
* Disallow multiple plugin types in a single model folder
* Automatically add exclude_gpus argument in for cpu backends
* Cpu backend fixes
* Relax optimizer test threshold
* Default Train settings - Set mask to Extended
* Update Extractor cli help text
Update to Python 3.8
* Fix FAN to run on CPU
* lib.plaidml_tools - typofix
* Linux installer - check for curl
* linux installer - typo fix