mirror of
https://github.com/zebrajr/faceswap.git
synced 2025-12-06 00:20:09 +01:00
Add AlexNet + SqueezeNet definitions
This commit is contained in:
parent
1d434b73a4
commit
ef79a3d8cb
|
|
@ -55,7 +55,7 @@ model.losses module
|
||||||
-------------------
|
-------------------
|
||||||
|
|
||||||
The losses listed here are generated from the docstrings in :mod:`lib.model.losses_tf`, however
|
The losses listed here are generated from the docstrings in :mod:`lib.model.losses_tf`, however
|
||||||
the functions are excactly the same for :mod:`lib.model.losses_plaid`. The correct loss module will
|
the functions are exactly the same for :mod:`lib.model.losses_plaid`. The correct loss module will
|
||||||
be imported as :mod:`lib.model.losses` depending on the backend in use.
|
be imported as :mod:`lib.model.losses` depending on the backend in use.
|
||||||
|
|
||||||
.. rubric:: Module Summary
|
.. rubric:: Module Summary
|
||||||
|
|
@ -63,14 +63,32 @@ be imported as :mod:`lib.model.losses` depending on the backend in use.
|
||||||
.. autosummary::
|
.. autosummary::
|
||||||
:nosignatures:
|
:nosignatures:
|
||||||
|
|
||||||
~lib.model.losses_tf.DSSIMObjective
|
~lib.model.loss.loss_tf.DSSIMObjective
|
||||||
~lib.model.losses_tf.GeneralizedLoss
|
~lib.model.loss.loss_tf.FocalFrequencyLoss
|
||||||
~lib.model.losses_tf.GMSDLoss
|
~lib.model.loss.loss_tf.GeneralizedLoss
|
||||||
~lib.model.losses_tf.GradientLoss
|
~lib.model.loss.loss_tf.GMSDLoss
|
||||||
~lib.model.losses_tf.LInfNorm
|
~lib.model.loss.loss_tf.GradientLoss
|
||||||
~lib.model.losses_tf.LossWrapper
|
~lib.model.loss.loss_tf.LaplacianPyramidLoss
|
||||||
|
~lib.model.loss.loss_tf.LInfNorm
|
||||||
|
~lib.model.loss.loss_tf.LossWrapper
|
||||||
|
|
||||||
.. automodule:: lib.model.losses_tf
|
.. automodule:: lib.model.loss.loss_tf
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
||||||
|
|
||||||
|
model.nets module
|
||||||
|
-----------------
|
||||||
|
|
||||||
|
.. rubric:: Module Summary
|
||||||
|
|
||||||
|
.. autosummary::
|
||||||
|
:nosignatures:
|
||||||
|
|
||||||
|
~lib.model.nets.AlexNet
|
||||||
|
~lib.model.nets.SqueezeNet
|
||||||
|
|
||||||
|
.. automodule:: lib.model.nets
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
|
||||||
|
|
@ -11,6 +11,17 @@ The Train Package handles the Model and Trainer plugins for training models in F
|
||||||
model package
|
model package
|
||||||
=============
|
=============
|
||||||
|
|
||||||
|
This package contains various helper functions that plugins can inherit from
|
||||||
|
|
||||||
|
.. rubric:: Module Summary
|
||||||
|
|
||||||
|
.. autosummary::
|
||||||
|
:nosignatures:
|
||||||
|
|
||||||
|
~plugins.train.model._base.model
|
||||||
|
~plugins.train.model._base.settings
|
||||||
|
~plugins.train.model._base.io
|
||||||
|
|
||||||
model._base.model module
|
model._base.model module
|
||||||
------------------------
|
------------------------
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -17,7 +17,7 @@ logger = logging.getLogger(__name__) # pylint:disable=invalid-name
|
||||||
|
|
||||||
|
|
||||||
class DSSIMObjective(): # pylint:disable=too-few-public-methods
|
class DSSIMObjective(): # pylint:disable=too-few-public-methods
|
||||||
""" DSSIM and MS-DSSIM Loss Functions
|
""" DSSIM Loss Function
|
||||||
|
|
||||||
Difference of Structural Similarity (DSSIM loss function).
|
Difference of Structural Similarity (DSSIM loss function).
|
||||||
|
|
||||||
|
|
@ -678,13 +678,12 @@ class LInfNorm(): # pylint:disable=too-few-public-methods
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
|
||||||
class LogCosh():
|
class LogCosh(): # pylint:disable=too-few-public-methods
|
||||||
"""Logarithm of the hyperbolic cosine of the prediction error.
|
"""Logarithm of the hyperbolic cosine of the prediction error.
|
||||||
|
|
||||||
`log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and
|
`log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and to `abs(x) - log(2)`
|
||||||
to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly
|
for large `x`. This means that 'logcosh' works mostly like the mean squared error, but will not
|
||||||
like the mean squared error, but will not be so strongly affected by the
|
be so strongly affected by the occasional wildly incorrect prediction.
|
||||||
occasional wildly incorrect prediction.
|
|
||||||
"""
|
"""
|
||||||
def __call__(self,
|
def __call__(self,
|
||||||
y_true: plaidml.tile.Value,
|
y_true: plaidml.tile.Value,
|
||||||
|
|
|
||||||
|
|
@ -17,7 +17,7 @@ logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class DSSIMObjective(): # pylint:disable=too-few-public-methods
|
class DSSIMObjective(): # pylint:disable=too-few-public-methods
|
||||||
""" DSSIM and MS-DSSIM Loss Functions
|
""" DSSIM Loss Functions
|
||||||
|
|
||||||
Difference of Structural Similarity (DSSIM loss function).
|
Difference of Structural Similarity (DSSIM loss function).
|
||||||
|
|
||||||
|
|
|
||||||
212
lib/model/nets.py
Normal file
212
lib/model/nets.py
Normal file
|
|
@ -0,0 +1,212 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
""" Ports of existing NN Architecture for use in faceswap.py """
|
||||||
|
import logging
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
from lib.utils import get_backend
|
||||||
|
|
||||||
|
if get_backend() == "amd":
|
||||||
|
from keras.layers import Concatenate, Conv2D, Input, MaxPool2D, ZeroPadding2D
|
||||||
|
from keras.models import Model
|
||||||
|
from plaidml.tile import Value as Tensor
|
||||||
|
else:
|
||||||
|
# Ignore linting errors from Tensorflow's thoroughly broken import system
|
||||||
|
from tensorflow.keras.layers import Concatenate, Conv2D, Input, MaxPool2D, ZeroPadding2D # noqa pylint:disable=no-name-in-module,import-error
|
||||||
|
from tensorflow.keras.models import Model # noqa pylint:disable=no-name-in-module,import-error
|
||||||
|
from tensorflow import Tensor
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class _net(): # pylint:disable=too-few-public-methods
|
||||||
|
""" Base class for existing NeuralNet architecture
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
All architectures assume channels_last format
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
input_shape, Tuple, optional
|
||||||
|
The input shape for the model. Default: ``None``
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
input_shape: Optional[Tuple[int, int, int]] = None) -> None:
|
||||||
|
logger.debug("Initializing: %s (input_shape: %s)", self.__class__.__name__, input_shape)
|
||||||
|
self._input_shape = (None, None, 3) if input_shape is None else input_shape
|
||||||
|
assert len(self._input_shape) == 3 and self._input_shape[-1] == 3, (
|
||||||
|
"Input shape must be in the format (height, width, channels) and the number of "
|
||||||
|
f"channels must equal 3. Received: {self._input_shape}")
|
||||||
|
logger.debug("Initialized: %s", self.__class__.__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class AlexNet(_net): # pylint:disable=too-few-public-methods
|
||||||
|
""" AlexNet ported from torchvision version.
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
This port only contains the features portion of the model.
|
||||||
|
|
||||||
|
Reference
|
||||||
|
---------
|
||||||
|
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
input_shape, Tuple, optional
|
||||||
|
The input shape for the model. Default: ``None``
|
||||||
|
"""
|
||||||
|
def __init__(self, input_shape: Optional[Tuple[int, int, int]] = None) -> None:
|
||||||
|
super().__init__(input_shape)
|
||||||
|
self._feature_indices = [0, 3, 6, 8, 10] # For naming equivalent to PyTorch
|
||||||
|
self._filters = [64, 192, 384, 256, 256] # Filters at each block
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def _conv_block(cls,
|
||||||
|
inputs: Tensor,
|
||||||
|
padding: int,
|
||||||
|
filters: int,
|
||||||
|
kernel_size: int,
|
||||||
|
strides: int,
|
||||||
|
block_idx: int,
|
||||||
|
max_pool: bool) -> Tensor:
|
||||||
|
"""
|
||||||
|
The Convolutional block for AlexNet
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
inputs: :class:`plaidml.tile.Value` or :class:`tf.Tensor`
|
||||||
|
The input tensor to the block
|
||||||
|
padding: int
|
||||||
|
The amount of zero paddin to apply prior to convolution
|
||||||
|
filters: int
|
||||||
|
The number of filters to apply during convolution
|
||||||
|
kernel_size: int
|
||||||
|
The kernel size of the convolution
|
||||||
|
strides: int
|
||||||
|
The number of strides for the convolution
|
||||||
|
block_idx: int
|
||||||
|
The index of the current block (for standardized naming convention)
|
||||||
|
max_pool: bool
|
||||||
|
``True`` to apply a max pooling layer at the beginning of the block otherwise ``False``
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
:class:`plaidml.tile.Value` or :class:`tf.Tensor`
|
||||||
|
The output of the Convolutional block
|
||||||
|
"""
|
||||||
|
name = f"features.{block_idx}"
|
||||||
|
var_x = inputs
|
||||||
|
if max_pool:
|
||||||
|
var_x = MaxPool2D(pool_size=3, strides=2, name=f"{name}.pool")(var_x)
|
||||||
|
var_x = ZeroPadding2D(padding=padding, name=f"{name}.pad")(var_x)
|
||||||
|
var_x = Conv2D(filters,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
strides=strides,
|
||||||
|
padding="valid",
|
||||||
|
activation="relu",
|
||||||
|
name=name)(var_x)
|
||||||
|
return var_x
|
||||||
|
|
||||||
|
def __call__(self) -> Model:
|
||||||
|
""" Create the AlexNet Model
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
:class:`keras.models.Model`
|
||||||
|
The compiled AlexNet model
|
||||||
|
"""
|
||||||
|
inputs = Input(self._input_shape)
|
||||||
|
var_x = inputs
|
||||||
|
kernel_size = 11
|
||||||
|
strides = 4
|
||||||
|
|
||||||
|
for idx, (filters, block_idx) in enumerate(zip(self._filters, self._feature_indices)):
|
||||||
|
padding = 2 if idx < 2 else 1
|
||||||
|
do_max_pool = 0 < idx < 3
|
||||||
|
var_x = self._conv_block(var_x,
|
||||||
|
padding,
|
||||||
|
filters,
|
||||||
|
kernel_size,
|
||||||
|
strides,
|
||||||
|
block_idx,
|
||||||
|
do_max_pool)
|
||||||
|
kernel_size = max(3, kernel_size // 2)
|
||||||
|
strides = 1
|
||||||
|
return Model(inputs=inputs, outputs=[var_x])
|
||||||
|
|
||||||
|
|
||||||
|
class SqueezeNet(_net): # pylint:disable=too-few-public-methods
|
||||||
|
""" SqueezeNet ported from torchvision version.
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
This port only contains the features portion of the model.
|
||||||
|
|
||||||
|
Reference
|
||||||
|
---------
|
||||||
|
https://arxiv.org/abs/1602.07360
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
input_shape, Tuple, optional
|
||||||
|
The input shape for the model. Default: ``None``
|
||||||
|
"""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def _fire(cls,
|
||||||
|
inputs: Tensor,
|
||||||
|
squeeze_planes: int,
|
||||||
|
expand_planes: int,
|
||||||
|
block_idx: int) -> Tensor:
|
||||||
|
""" The fire block for SqueezeNet.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
inputs: :class:`plaidml.tile.Value` or :class:`tf.Tensor`
|
||||||
|
The input to the fire block
|
||||||
|
squeeze_planes: int
|
||||||
|
The number of filters for the squeeze convolution
|
||||||
|
expand_planes: int
|
||||||
|
The number of filters for the expand convolutions
|
||||||
|
block_idx: int
|
||||||
|
The index of the current block (for standardized naming convention)
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
:class:`plaidml.tile.Value` or :class:`tf.Tensor`
|
||||||
|
The output of the SqueezeNet fire block
|
||||||
|
"""
|
||||||
|
name = f"features.{block_idx}"
|
||||||
|
squeezed = Conv2D(squeeze_planes, 1, activation="relu", name=f"{name}.squeeze")(inputs)
|
||||||
|
expand1 = Conv2D(expand_planes, 1, activation="relu", name=f"{name}.expand1x1")(squeezed)
|
||||||
|
expand3 = Conv2D(expand_planes, 3,
|
||||||
|
activation="relu", padding="same", name=f"{name}.expand3x3")(squeezed)
|
||||||
|
return Concatenate(axis=-1, name=name)([expand1, expand3])
|
||||||
|
|
||||||
|
def __call__(self) -> Model:
|
||||||
|
""" Create the SqueezeNet Model
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
:class:`keras.models.Model`
|
||||||
|
The compiled SqueezeNet model
|
||||||
|
"""
|
||||||
|
inputs = Input(self._input_shape)
|
||||||
|
var_x = Conv2D(64, 3, strides=2, activation="relu", name="features.0")(inputs)
|
||||||
|
|
||||||
|
block_idx = 2
|
||||||
|
squeeze = 16
|
||||||
|
expand = 64
|
||||||
|
for idx in range(4):
|
||||||
|
if idx < 3:
|
||||||
|
var_x = MaxPool2D(pool_size=3, strides=2)(var_x)
|
||||||
|
block_idx += 1
|
||||||
|
var_x = self._fire(var_x, squeeze, expand, block_idx)
|
||||||
|
block_idx += 1
|
||||||
|
var_x = self._fire(var_x, squeeze, expand, block_idx)
|
||||||
|
block_idx += 1
|
||||||
|
squeeze += 16
|
||||||
|
expand += 64
|
||||||
|
return Model(inputs=inputs, outputs=[var_x])
|
||||||
Loading…
Reference in New Issue
Block a user