mirror of
https://github.com/hacksider/Deep-Live-Cam.git
synced 2025-12-06 00:20:02 +01:00
optimization with mac
Hoping this would solve the mac issues, if you're a mac user, please report if there is an improvement
This commit is contained in:
parent
2411f1e9b1
commit
b3c4ed9250
|
|
@ -1,8 +1,9 @@
|
|||
from typing import Any, List
|
||||
from typing import Any, List, Optional
|
||||
import cv2
|
||||
import insightface
|
||||
import threading
|
||||
import numpy as np
|
||||
import platform
|
||||
import modules.globals
|
||||
import modules.processors.frame.core
|
||||
from modules.core import update_status
|
||||
|
|
@ -14,9 +15,9 @@ from modules.utilities import (
|
|||
is_video,
|
||||
)
|
||||
from modules.cluster_analysis import find_closest_centroid
|
||||
# Removed modules.globals.face_swapper_enabled - assuming controlled elsewhere or implicitly true if used
|
||||
# Removed modules.globals.opacity - accessed via getattr
|
||||
import os
|
||||
from collections import deque
|
||||
import time
|
||||
|
||||
FACE_SWAPPER = None
|
||||
THREAD_LOCK = threading.Lock()
|
||||
|
|
@ -26,6 +27,16 @@ NAME = "DLC.FACE-SWAPPER"
|
|||
PREVIOUS_FRAME_RESULT = None # Stores the final processed frame from the previous step
|
||||
# --- END: Added for Interpolation ---
|
||||
|
||||
# --- START: Mac M1-M5 Optimizations ---
|
||||
IS_APPLE_SILICON = platform.system() == 'Darwin' and platform.machine() == 'arm64'
|
||||
FRAME_CACHE = deque(maxlen=3) # Cache for frame reuse
|
||||
FACE_DETECTION_CACHE = {} # Cache face detections
|
||||
LAST_DETECTION_TIME = 0
|
||||
DETECTION_INTERVAL = 0.033 # ~30 FPS detection rate for live mode
|
||||
FRAME_SKIP_COUNTER = 0
|
||||
ADAPTIVE_QUALITY = True
|
||||
# --- END: Mac M1-M5 Optimizations ---
|
||||
|
||||
abs_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
models_dir = os.path.join(
|
||||
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
|
||||
|
|
@ -69,34 +80,34 @@ def get_face_swapper() -> Any:
|
|||
model_path = os.path.join(models_dir, model_name)
|
||||
update_status(f"Loading face swapper model from: {model_path}", NAME)
|
||||
try:
|
||||
# Ensure the providers list is correctly passed
|
||||
# Apply CoreML optimization for Mac systems
|
||||
FACE_SWAPPER = insightface.model_zoo.get_model(
|
||||
model_path,
|
||||
providers=[
|
||||
(
|
||||
(
|
||||
# Optimized provider configuration for Apple Silicon
|
||||
providers_config = []
|
||||
for p in modules.globals.execution_providers:
|
||||
if p == "CoreMLExecutionProvider" and IS_APPLE_SILICON:
|
||||
# Enhanced CoreML configuration for M1-M5
|
||||
providers_config.append((
|
||||
"CoreMLExecutionProvider",
|
||||
{
|
||||
"ModelFormat": "MLProgram",
|
||||
"MLComputeUnits": "CPUAndGPU",
|
||||
"MLComputeUnits": "ALL", # Use Neural Engine + GPU + CPU
|
||||
"SpecializationStrategy": "FastPrediction",
|
||||
"AllowLowPrecisionAccumulationOnGPU": 1,
|
||||
},
|
||||
)
|
||||
if p == "CoreMLExecutionProvider"
|
||||
else p
|
||||
)
|
||||
for p in modules.globals.execution_providers
|
||||
],
|
||||
"EnableOnSubgraphs": 1,
|
||||
"RequireStaticShapes": 0,
|
||||
"MaximumCacheSize": 1024 * 1024 * 512, # 512MB cache
|
||||
}
|
||||
))
|
||||
else:
|
||||
providers_config.append(p)
|
||||
|
||||
FACE_SWAPPER = insightface.model_zoo.get_model(
|
||||
model_path,
|
||||
providers=providers_config,
|
||||
)
|
||||
update_status("Face swapper model loaded successfully.", NAME)
|
||||
except Exception as e:
|
||||
update_status(f"Error loading face swapper model: {e}", NAME)
|
||||
# print traceback maybe?
|
||||
# import traceback
|
||||
# traceback.print_exc()
|
||||
FACE_SWAPPER = None # Ensure it remains None on failure
|
||||
FACE_SWAPPER = None
|
||||
return None
|
||||
return FACE_SWAPPER
|
||||
|
||||
|
|
@ -105,19 +116,22 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
|||
face_swapper = get_face_swapper()
|
||||
if face_swapper is None:
|
||||
update_status("Face swapper model not loaded or failed to load. Skipping swap.", NAME)
|
||||
return temp_frame # Return original frame if model failed or not loaded
|
||||
return temp_frame
|
||||
|
||||
# Store a copy of the original frame before swapping for opacity blending
|
||||
original_frame = temp_frame.copy()
|
||||
|
||||
# --- Pre-swap Input Check (Optional but good practice) ---
|
||||
# Pre-swap Input Check with optimization
|
||||
if temp_frame.dtype != np.uint8:
|
||||
# print(f"Warning: Input frame is {temp_frame.dtype}, converting to uint8 before swap.")
|
||||
temp_frame = np.clip(temp_frame, 0, 255).astype(np.uint8)
|
||||
# --- End Input Check ---
|
||||
|
||||
# Apply the face swap
|
||||
# Apply the face swap with optimized memory handling
|
||||
try:
|
||||
# For Apple Silicon, use optimized inference
|
||||
if IS_APPLE_SILICON:
|
||||
# Ensure contiguous memory layout for better performance
|
||||
temp_frame = np.ascontiguousarray(temp_frame)
|
||||
|
||||
swapped_frame_raw = face_swapper.get(
|
||||
temp_frame, target_face, source_face, paste_back=True
|
||||
)
|
||||
|
|
@ -195,14 +209,50 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
|||
return final_swapped_frame
|
||||
|
||||
|
||||
# --- START: Mac M1-M5 Optimized Face Detection ---
|
||||
def get_faces_optimized(frame: Frame, use_cache: bool = True) -> Optional[List[Face]]:
|
||||
"""Optimized face detection for live mode on Apple Silicon"""
|
||||
global LAST_DETECTION_TIME, FACE_DETECTION_CACHE
|
||||
|
||||
if not use_cache or not IS_APPLE_SILICON:
|
||||
# Standard detection
|
||||
if modules.globals.many_faces:
|
||||
return get_many_faces(frame)
|
||||
else:
|
||||
face = get_one_face(frame)
|
||||
return [face] if face else None
|
||||
|
||||
# Adaptive detection rate for live mode
|
||||
current_time = time.time()
|
||||
time_since_last = current_time - LAST_DETECTION_TIME
|
||||
|
||||
# Skip detection if too soon (adaptive frame skipping)
|
||||
if time_since_last < DETECTION_INTERVAL and FACE_DETECTION_CACHE:
|
||||
return FACE_DETECTION_CACHE.get('faces')
|
||||
|
||||
# Perform detection
|
||||
LAST_DETECTION_TIME = current_time
|
||||
if modules.globals.many_faces:
|
||||
faces = get_many_faces(frame)
|
||||
else:
|
||||
face = get_one_face(frame)
|
||||
faces = [face] if face else None
|
||||
|
||||
# Cache results
|
||||
FACE_DETECTION_CACHE['faces'] = faces
|
||||
FACE_DETECTION_CACHE['timestamp'] = current_time
|
||||
|
||||
return faces
|
||||
# --- END: Mac M1-M5 Optimized Face Detection ---
|
||||
|
||||
# --- START: Helper function for interpolation and sharpening ---
|
||||
def apply_post_processing(current_frame: Frame, swapped_face_bboxes: List[np.ndarray]) -> Frame:
|
||||
"""Applies sharpening and interpolation."""
|
||||
"""Applies sharpening and interpolation with Apple Silicon optimizations."""
|
||||
global PREVIOUS_FRAME_RESULT
|
||||
|
||||
processed_frame = current_frame.copy()
|
||||
|
||||
# 1. Apply Sharpening (if enabled)
|
||||
# 1. Apply Sharpening (if enabled) with optimized kernel for Apple Silicon
|
||||
sharpness_value = getattr(modules.globals, "sharpness", 0.0)
|
||||
if sharpness_value > 0.0 and swapped_face_bboxes:
|
||||
height, width = processed_frame.shape[:2]
|
||||
|
|
@ -225,23 +275,21 @@ def apply_post_processing(current_frame: Frame, swapped_face_bboxes: List[np.nda
|
|||
continue
|
||||
|
||||
face_region = processed_frame[y1:y2, x1:x2]
|
||||
if face_region.size == 0: continue # Skip empty regions
|
||||
if face_region.size == 0: continue
|
||||
|
||||
# Apply sharpening using addWeighted for smoother control
|
||||
# Use try-except for GaussianBlur and addWeighted as they can fail on invalid inputs
|
||||
# Apply sharpening with optimized parameters for Apple Silicon
|
||||
try:
|
||||
blurred = cv2.GaussianBlur(face_region, (0, 0), 3) # sigma=3, kernel size auto
|
||||
# Use smaller sigma for faster processing on Apple Silicon
|
||||
sigma = 2 if IS_APPLE_SILICON else 3
|
||||
blurred = cv2.GaussianBlur(face_region, (0, 0), sigma)
|
||||
sharpened_region = cv2.addWeighted(
|
||||
face_region, 1.0 + sharpness_value,
|
||||
blurred, -sharpness_value,
|
||||
0
|
||||
)
|
||||
# Ensure the sharpened region doesn't have invalid values
|
||||
sharpened_region = np.clip(sharpened_region, 0, 255).astype(np.uint8)
|
||||
processed_frame[y1:y2, x1:x2] = sharpened_region
|
||||
except cv2.error as sharpen_e:
|
||||
# print(f"Warning: OpenCV error during sharpening: {sharpen_e} for bbox {bbox}") # Debug
|
||||
# Skip sharpening for this region if it fails
|
||||
except cv2.error:
|
||||
pass
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user